平衡元素扩散对Sn-9Zn-0.02Al/Cu钎料界面金属间化合物生长和空洞缺陷形成的调控:Pt合金化的影响

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Zhihang Zhang , Zida Wang , Jinghao Xu , Wei Shao , Jihua Huang , Shuhai Chen , Zheng Ye , Wanli Wang , Jian Yang
{"title":"平衡元素扩散对Sn-9Zn-0.02Al/Cu钎料界面金属间化合物生长和空洞缺陷形成的调控:Pt合金化的影响","authors":"Zhihang Zhang ,&nbsp;Zida Wang ,&nbsp;Jinghao Xu ,&nbsp;Wei Shao ,&nbsp;Jihua Huang ,&nbsp;Shuhai Chen ,&nbsp;Zheng Ye ,&nbsp;Wanli Wang ,&nbsp;Jian Yang","doi":"10.1016/j.matchar.2025.115057","DOIUrl":null,"url":null,"abstract":"<div><div>While micro-alloying with Al has resolved poor wettability of Sn-Zn (SZ) solder alloys, suppressing interfacial void defects in Sn-Zn-Al (SZA)/Cu joints during service remains a critical reliability challenge. Previous studies on Pt-alloying SZA alloys demonstrated enhanced mechanical reliability but lacked mechanistic insights into the role of Pt in regulating Cu diffusion (the key influence factor of void formation) and failed to establish dynamic correlations between intermetallic compound (IMC) growth and void formation. Building on this foundation, this study integrated aging experiments, atomic-scale microstructure observation, and density functional theory (DFT) calculations to reveal dual-path suppression mechanism of Pt. The addition of 0.25 wt% Pt increased the Cu<sub>5</sub>Zn<sub>8</sub> layer thickness by 19 % (from 7.02 to 8.38 μm) and reduced void area by 76 % (from 25.8 to 6.1 μm<sup>2</sup>) after 240 h aging. A three-stage model elucidates the relationship between Cu<sub>5</sub>Zn<sub>8</sub> growth and void formation: (I) Zn-sufficient rapid growth with balanced diffusion, (II) Zn-depletion transition initiating localized voids (&lt;80 h), and (III) Cu-dominated void expansion via vacancy extensions (&gt;80 h). Crucially, Pt suppresses Cu diffusion through grain boundary blocking and elevates intragranular diffusion barriers through lattice distortion and crystallographic orientation optimization. These atomic-scale mechanisms relieve the Cu/Zn interdiffusion imbalance, offering a transformative strategy for designing high-performance solder joints in high-density microelectronics.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"224 ","pages":"Article 115057"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of interfacial intermetallic compounds growth and void defect formation in Sn-9Zn-0.02Al/Cu solder joint by balancing interfacial elemental diffusion: An effect of Pt alloying\",\"authors\":\"Zhihang Zhang ,&nbsp;Zida Wang ,&nbsp;Jinghao Xu ,&nbsp;Wei Shao ,&nbsp;Jihua Huang ,&nbsp;Shuhai Chen ,&nbsp;Zheng Ye ,&nbsp;Wanli Wang ,&nbsp;Jian Yang\",\"doi\":\"10.1016/j.matchar.2025.115057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While micro-alloying with Al has resolved poor wettability of Sn-Zn (SZ) solder alloys, suppressing interfacial void defects in Sn-Zn-Al (SZA)/Cu joints during service remains a critical reliability challenge. Previous studies on Pt-alloying SZA alloys demonstrated enhanced mechanical reliability but lacked mechanistic insights into the role of Pt in regulating Cu diffusion (the key influence factor of void formation) and failed to establish dynamic correlations between intermetallic compound (IMC) growth and void formation. Building on this foundation, this study integrated aging experiments, atomic-scale microstructure observation, and density functional theory (DFT) calculations to reveal dual-path suppression mechanism of Pt. The addition of 0.25 wt% Pt increased the Cu<sub>5</sub>Zn<sub>8</sub> layer thickness by 19 % (from 7.02 to 8.38 μm) and reduced void area by 76 % (from 25.8 to 6.1 μm<sup>2</sup>) after 240 h aging. A three-stage model elucidates the relationship between Cu<sub>5</sub>Zn<sub>8</sub> growth and void formation: (I) Zn-sufficient rapid growth with balanced diffusion, (II) Zn-depletion transition initiating localized voids (&lt;80 h), and (III) Cu-dominated void expansion via vacancy extensions (&gt;80 h). Crucially, Pt suppresses Cu diffusion through grain boundary blocking and elevates intragranular diffusion barriers through lattice distortion and crystallographic orientation optimization. These atomic-scale mechanisms relieve the Cu/Zn interdiffusion imbalance, offering a transformative strategy for designing high-performance solder joints in high-density microelectronics.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"224 \",\"pages\":\"Article 115057\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325003468\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325003468","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

虽然Al微合金化解决了Sn-Zn (SZ)钎料合金润湿性差的问题,但在使用过程中抑制Sn-Zn-Al (SZA)/Cu接头的界面空洞缺陷仍然是一个关键的可靠性挑战。以往的研究表明,Pt合金化SZA合金的力学可靠性有所提高,但缺乏对Pt在调节Cu扩散(空洞形成的关键影响因素)中的作用的机制认识,也未能建立金属间化合物(IMC)生长与空洞形成之间的动态相关性。在此基础上,本研究结合时效实验、原子尺度微观结构观察和密度泛函理论(DFT)计算,揭示了Pt的双路抑制机理。添加0.25 wt% Pt,时效240 h后,Cu5Zn8层厚度增加19%(从7.02 μm增加到8.38 μm),空洞面积减少76%(从25.8 μm2减少到6.1 μm2)。一个三阶段模型阐明了Cu5Zn8生长与空洞形成之间的关系:(I)充分zn的快速生长与平衡扩散,(II) zn耗尽转变引发局部空洞(<80 h),以及(III) Cu主导的空洞扩张通过空位扩展(>80 h)。关键是,Pt通过阻挡晶界抑制Cu扩散,并通过晶格畸变和晶体取向优化提高晶内扩散障碍。这些原子尺度机制缓解了Cu/Zn相互扩散不平衡,为高密度微电子中高性能焊点的设计提供了一种变革性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulation of interfacial intermetallic compounds growth and void defect formation in Sn-9Zn-0.02Al/Cu solder joint by balancing interfacial elemental diffusion: An effect of Pt alloying

Regulation of interfacial intermetallic compounds growth and void defect formation in Sn-9Zn-0.02Al/Cu solder joint by balancing interfacial elemental diffusion: An effect of Pt alloying
While micro-alloying with Al has resolved poor wettability of Sn-Zn (SZ) solder alloys, suppressing interfacial void defects in Sn-Zn-Al (SZA)/Cu joints during service remains a critical reliability challenge. Previous studies on Pt-alloying SZA alloys demonstrated enhanced mechanical reliability but lacked mechanistic insights into the role of Pt in regulating Cu diffusion (the key influence factor of void formation) and failed to establish dynamic correlations between intermetallic compound (IMC) growth and void formation. Building on this foundation, this study integrated aging experiments, atomic-scale microstructure observation, and density functional theory (DFT) calculations to reveal dual-path suppression mechanism of Pt. The addition of 0.25 wt% Pt increased the Cu5Zn8 layer thickness by 19 % (from 7.02 to 8.38 μm) and reduced void area by 76 % (from 25.8 to 6.1 μm2) after 240 h aging. A three-stage model elucidates the relationship between Cu5Zn8 growth and void formation: (I) Zn-sufficient rapid growth with balanced diffusion, (II) Zn-depletion transition initiating localized voids (<80 h), and (III) Cu-dominated void expansion via vacancy extensions (>80 h). Crucially, Pt suppresses Cu diffusion through grain boundary blocking and elevates intragranular diffusion barriers through lattice distortion and crystallographic orientation optimization. These atomic-scale mechanisms relieve the Cu/Zn interdiffusion imbalance, offering a transformative strategy for designing high-performance solder joints in high-density microelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信