Hyunggon Park , Kaitlyn M. Mullin , Vijay Kumar , Olivia Wander , Tresa M. Pollock , Yangying Zhu
{"title":"求解激光熔化难熔合金的热梯度和凝固速度","authors":"Hyunggon Park , Kaitlyn M. Mullin , Vijay Kumar , Olivia Wander , Tresa M. Pollock , Yangying Zhu","doi":"10.1016/j.addma.2025.104750","DOIUrl":null,"url":null,"abstract":"<div><div>Metal additive manufacturing (AM) processes, such as laser powder bed fusion (L-PBF), can yield high-value parts with unique geometries and features, substantially reducing costs and enhancing performance. However, the material properties from L-PBF processes are highly sensitive to the laser processing conditions and the resulting dynamic temperature fields around the melt pool. In this study, we develop a methodology to measure thermal gradients, cooling rates, and solidification velocities during solidification of refractory alloy C103 using in situ high-speed infrared (IR) imaging with a high frame rate of approximately 15,000 frames per second (fps). Radiation intensity maps are converted to temperature maps by integrating thermal radiation over the wavelength range of the camera detector while also considering signal attenuation caused by optical parts. Using a simple method that assigns the liquidus temperature to the melt pool boundary identified ex situ, a scaling relationship between temperature and the IR signal was obtained. The spatial temperature gradients (<span><math><mrow><mi>d</mi><mi>T</mi><mo>/</mo><mi>d</mi><mi>x</mi></mrow></math></span>), heating/cooling rates (<span><math><mrow><mi>d</mi><mi>T</mi><mo>/</mo><mi>d</mi><mi>t</mi></mrow></math></span>), and solidification velocities (<span><math><mi>R</mi></math></span>) are resolved with sufficient temporal resolution under various laser processing conditions, and the resulting microstructures are analyzed, revealing epitaxial growth and nucleated grain growth. Thermal data shows that a decreasing temperature gradient and increasing solidification velocity from the edge to the center of the melt pool can induce a transition from epitaxial to equiaxed grain morphology, consistent with the previously reported columnar to equiaxed transition (CET) trend. The methodology presented can reduce the uncertainty and variability in AM and guide microstructure control during AM of metallic alloys.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"105 ","pages":"Article 104750"},"PeriodicalIF":10.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolving thermal gradients and solidification velocities during laser melting of a refractory alloy\",\"authors\":\"Hyunggon Park , Kaitlyn M. Mullin , Vijay Kumar , Olivia Wander , Tresa M. Pollock , Yangying Zhu\",\"doi\":\"10.1016/j.addma.2025.104750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal additive manufacturing (AM) processes, such as laser powder bed fusion (L-PBF), can yield high-value parts with unique geometries and features, substantially reducing costs and enhancing performance. However, the material properties from L-PBF processes are highly sensitive to the laser processing conditions and the resulting dynamic temperature fields around the melt pool. In this study, we develop a methodology to measure thermal gradients, cooling rates, and solidification velocities during solidification of refractory alloy C103 using in situ high-speed infrared (IR) imaging with a high frame rate of approximately 15,000 frames per second (fps). Radiation intensity maps are converted to temperature maps by integrating thermal radiation over the wavelength range of the camera detector while also considering signal attenuation caused by optical parts. Using a simple method that assigns the liquidus temperature to the melt pool boundary identified ex situ, a scaling relationship between temperature and the IR signal was obtained. The spatial temperature gradients (<span><math><mrow><mi>d</mi><mi>T</mi><mo>/</mo><mi>d</mi><mi>x</mi></mrow></math></span>), heating/cooling rates (<span><math><mrow><mi>d</mi><mi>T</mi><mo>/</mo><mi>d</mi><mi>t</mi></mrow></math></span>), and solidification velocities (<span><math><mi>R</mi></math></span>) are resolved with sufficient temporal resolution under various laser processing conditions, and the resulting microstructures are analyzed, revealing epitaxial growth and nucleated grain growth. Thermal data shows that a decreasing temperature gradient and increasing solidification velocity from the edge to the center of the melt pool can induce a transition from epitaxial to equiaxed grain morphology, consistent with the previously reported columnar to equiaxed transition (CET) trend. The methodology presented can reduce the uncertainty and variability in AM and guide microstructure control during AM of metallic alloys.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"105 \",\"pages\":\"Article 104750\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860425001149\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001149","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Resolving thermal gradients and solidification velocities during laser melting of a refractory alloy
Metal additive manufacturing (AM) processes, such as laser powder bed fusion (L-PBF), can yield high-value parts with unique geometries and features, substantially reducing costs and enhancing performance. However, the material properties from L-PBF processes are highly sensitive to the laser processing conditions and the resulting dynamic temperature fields around the melt pool. In this study, we develop a methodology to measure thermal gradients, cooling rates, and solidification velocities during solidification of refractory alloy C103 using in situ high-speed infrared (IR) imaging with a high frame rate of approximately 15,000 frames per second (fps). Radiation intensity maps are converted to temperature maps by integrating thermal radiation over the wavelength range of the camera detector while also considering signal attenuation caused by optical parts. Using a simple method that assigns the liquidus temperature to the melt pool boundary identified ex situ, a scaling relationship between temperature and the IR signal was obtained. The spatial temperature gradients (), heating/cooling rates (), and solidification velocities () are resolved with sufficient temporal resolution under various laser processing conditions, and the resulting microstructures are analyzed, revealing epitaxial growth and nucleated grain growth. Thermal data shows that a decreasing temperature gradient and increasing solidification velocity from the edge to the center of the melt pool can induce a transition from epitaxial to equiaxed grain morphology, consistent with the previously reported columnar to equiaxed transition (CET) trend. The methodology presented can reduce the uncertainty and variability in AM and guide microstructure control during AM of metallic alloys.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.