{"title":"多功能完整LC-MS方法评价人血浆中抗体-药物偶联物的药物-抗体比率和药物负荷分布","authors":"Noritaka Hashii , Yusuke Haruyama , Ryu Hirayama , Ryo Kajita , Yuki Kishino , Toshiki Mochizuki , Kazuko Inoue , Ryoya Goda , Masaki Hoshino , Itsuki Kuroiwa , Hiroaki Aikawa , Natsuki Ueda , Kaori Nagumo , Yuki Oda , Yoshiro Saito , Akiko Ishii-Watabe","doi":"10.1016/j.jchromb.2025.124608","DOIUrl":null,"url":null,"abstract":"<div><div>The average drug–antibody ratio (DAR) and drug load distribution (DLD) of an antibody–drug conjugate (ADC) can be altered by biotransformation after administration. In addition, drug loading affects the clearance and exposure of the ADC. Evaluating alterations in the average DAR and DLD of an ADC in vivo would provide valuable information to better understand of the pharmacokinetic (PK) profile of the ADC. Although the quantitation of antibodies/ADCs using LC–MS is often coupled with affinity capture methods, here, we aimed to develop a versatile intact LC–MS method for evaluating the average DAR and DLD of ADCs in human plasma. The development of the affinity purification process and method validation were performed using healthy human pooled plasma spiked with the model ADCs, commercially available trastuzumab emtansine (T-DM1) and brentuximab vedotin (B-MMAE), and the recombinant proteins HER2 and CD30 were used to capture T-DM1 and B-MMAE, respectively. As unique points of this study, initially, a two-step gradient was established for the sensitive detection of a small amount of ADC. The ADC elution conditions after affinity capture were also optimized considering its application for LC–MS analysis. Furthermore, a validation study of the intact LC–MS approach for analyzing the average DAR and DLD of ADCs in human plasma sample was proposed for the first time. Using the validation study, our analytical method was validated by verifying its performance characteristics, including sensitivity, intermediate precision, accuracy, carryover and autosampler stability. In addition, the feasibility of applying our method was demonstrated by a collaborative study with six laboratories. Finally, our method was shown to be versatile for evaluating the average DAR and DLD of ADCs in human plasma.</div></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1258 ","pages":"Article 124608"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Versatile intact LC–MS method for evaluating the drug–antibody ratio and drug load distribution of antibody–drug conjugates in human plasma\",\"authors\":\"Noritaka Hashii , Yusuke Haruyama , Ryu Hirayama , Ryo Kajita , Yuki Kishino , Toshiki Mochizuki , Kazuko Inoue , Ryoya Goda , Masaki Hoshino , Itsuki Kuroiwa , Hiroaki Aikawa , Natsuki Ueda , Kaori Nagumo , Yuki Oda , Yoshiro Saito , Akiko Ishii-Watabe\",\"doi\":\"10.1016/j.jchromb.2025.124608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The average drug–antibody ratio (DAR) and drug load distribution (DLD) of an antibody–drug conjugate (ADC) can be altered by biotransformation after administration. In addition, drug loading affects the clearance and exposure of the ADC. Evaluating alterations in the average DAR and DLD of an ADC in vivo would provide valuable information to better understand of the pharmacokinetic (PK) profile of the ADC. Although the quantitation of antibodies/ADCs using LC–MS is often coupled with affinity capture methods, here, we aimed to develop a versatile intact LC–MS method for evaluating the average DAR and DLD of ADCs in human plasma. The development of the affinity purification process and method validation were performed using healthy human pooled plasma spiked with the model ADCs, commercially available trastuzumab emtansine (T-DM1) and brentuximab vedotin (B-MMAE), and the recombinant proteins HER2 and CD30 were used to capture T-DM1 and B-MMAE, respectively. As unique points of this study, initially, a two-step gradient was established for the sensitive detection of a small amount of ADC. The ADC elution conditions after affinity capture were also optimized considering its application for LC–MS analysis. Furthermore, a validation study of the intact LC–MS approach for analyzing the average DAR and DLD of ADCs in human plasma sample was proposed for the first time. Using the validation study, our analytical method was validated by verifying its performance characteristics, including sensitivity, intermediate precision, accuracy, carryover and autosampler stability. In addition, the feasibility of applying our method was demonstrated by a collaborative study with six laboratories. Finally, our method was shown to be versatile for evaluating the average DAR and DLD of ADCs in human plasma.</div></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1258 \",\"pages\":\"Article 124608\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023225001606\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023225001606","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Versatile intact LC–MS method for evaluating the drug–antibody ratio and drug load distribution of antibody–drug conjugates in human plasma
The average drug–antibody ratio (DAR) and drug load distribution (DLD) of an antibody–drug conjugate (ADC) can be altered by biotransformation after administration. In addition, drug loading affects the clearance and exposure of the ADC. Evaluating alterations in the average DAR and DLD of an ADC in vivo would provide valuable information to better understand of the pharmacokinetic (PK) profile of the ADC. Although the quantitation of antibodies/ADCs using LC–MS is often coupled with affinity capture methods, here, we aimed to develop a versatile intact LC–MS method for evaluating the average DAR and DLD of ADCs in human plasma. The development of the affinity purification process and method validation were performed using healthy human pooled plasma spiked with the model ADCs, commercially available trastuzumab emtansine (T-DM1) and brentuximab vedotin (B-MMAE), and the recombinant proteins HER2 and CD30 were used to capture T-DM1 and B-MMAE, respectively. As unique points of this study, initially, a two-step gradient was established for the sensitive detection of a small amount of ADC. The ADC elution conditions after affinity capture were also optimized considering its application for LC–MS analysis. Furthermore, a validation study of the intact LC–MS approach for analyzing the average DAR and DLD of ADCs in human plasma sample was proposed for the first time. Using the validation study, our analytical method was validated by verifying its performance characteristics, including sensitivity, intermediate precision, accuracy, carryover and autosampler stability. In addition, the feasibility of applying our method was demonstrated by a collaborative study with six laboratories. Finally, our method was shown to be versatile for evaluating the average DAR and DLD of ADCs in human plasma.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.