{"title":"随机非线性扩散方程障碍问题的适定性:一个熵公式","authors":"Kai Du , Ruoyang Liu","doi":"10.1016/j.jfa.2025.111012","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish the existence, uniqueness and stability results for the obstacle problem associated with a degenerate nonlinear diffusion equation perturbed by conservative gradient noise. Our approach revolves round introducing a new entropy formulation for stochastic variational inequalities. As a consequence, we obtain a novel well-posedness result for the obstacle problem of deterministic porous medium equations with nonlinear reaction terms.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111012"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of the obstacle problem for stochastic nonlinear diffusion equations: An entropy formulation\",\"authors\":\"Kai Du , Ruoyang Liu\",\"doi\":\"10.1016/j.jfa.2025.111012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we establish the existence, uniqueness and stability results for the obstacle problem associated with a degenerate nonlinear diffusion equation perturbed by conservative gradient noise. Our approach revolves round introducing a new entropy formulation for stochastic variational inequalities. As a consequence, we obtain a novel well-posedness result for the obstacle problem of deterministic porous medium equations with nonlinear reaction terms.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 8\",\"pages\":\"Article 111012\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001946\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001946","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Well-posedness of the obstacle problem for stochastic nonlinear diffusion equations: An entropy formulation
In this paper, we establish the existence, uniqueness and stability results for the obstacle problem associated with a degenerate nonlinear diffusion equation perturbed by conservative gradient noise. Our approach revolves round introducing a new entropy formulation for stochastic variational inequalities. As a consequence, we obtain a novel well-posedness result for the obstacle problem of deterministic porous medium equations with nonlinear reaction terms.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis