Kun Wang , Yulu Yang , Chang Liu , Yanan Li , Chang-Qing Cao , Pei-Gao Duan , Liang Pei , Jia Duo
{"title":"农业固体废弃物-葡萄藤水热炭化制备高性能吸附炭材料","authors":"Kun Wang , Yulu Yang , Chang Liu , Yanan Li , Chang-Qing Cao , Pei-Gao Duan , Liang Pei , Jia Duo","doi":"10.1016/j.jenvman.2025.125353","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses grapevine agricultural waste to prepare grapevine-derived biobased activated carbon (AGV) through chemical activation with NaOH after hydrothermal carbonization. A comprehensive analysis of the adsorption performance and mechanisms of AGV for methylene blue (MB) was conducted. The results demonstrated that AGV possesses a highly developed reticular pore structure, with a specific surface area of 3230.57 m<sup>2</sup> g<sup>−1</sup> and is rich in oxygen functional groups (OFGs). At pH 7.0, AGV achieved a removal rate of 90 % within 30 min, with a maximum adsorption capacity of 661.7 mg g<sup>−1</sup>, surpassing that of most previously reported activated carbons. Adsorption followed the Langmuir isotherm and pseudo-second-order kinetics, with thermodynamics confirming endothermic and spontaneous MB adsorption. The adsorption mechanism primarily involves chemical adsorption, including electrostatic interactions, pore filling, hydrogen bonding, acid-base interactions, and π-π stacking. The AGV maintained 86.7 % adsorption efficiency after 5 cycles, demonstrating excellent recyclability. This study provides a novel approach for preparing high-performance adsorption materials from waste biomass.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"383 ","pages":"Article 125353"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of high-performance adsorption carbon materials via hydrothermal carbonization of agricultural solid waste-grapevines\",\"authors\":\"Kun Wang , Yulu Yang , Chang Liu , Yanan Li , Chang-Qing Cao , Pei-Gao Duan , Liang Pei , Jia Duo\",\"doi\":\"10.1016/j.jenvman.2025.125353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study uses grapevine agricultural waste to prepare grapevine-derived biobased activated carbon (AGV) through chemical activation with NaOH after hydrothermal carbonization. A comprehensive analysis of the adsorption performance and mechanisms of AGV for methylene blue (MB) was conducted. The results demonstrated that AGV possesses a highly developed reticular pore structure, with a specific surface area of 3230.57 m<sup>2</sup> g<sup>−1</sup> and is rich in oxygen functional groups (OFGs). At pH 7.0, AGV achieved a removal rate of 90 % within 30 min, with a maximum adsorption capacity of 661.7 mg g<sup>−1</sup>, surpassing that of most previously reported activated carbons. Adsorption followed the Langmuir isotherm and pseudo-second-order kinetics, with thermodynamics confirming endothermic and spontaneous MB adsorption. The adsorption mechanism primarily involves chemical adsorption, including electrostatic interactions, pore filling, hydrogen bonding, acid-base interactions, and π-π stacking. The AGV maintained 86.7 % adsorption efficiency after 5 cycles, demonstrating excellent recyclability. This study provides a novel approach for preparing high-performance adsorption materials from waste biomass.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"383 \",\"pages\":\"Article 125353\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479725013295\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725013295","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Preparation of high-performance adsorption carbon materials via hydrothermal carbonization of agricultural solid waste-grapevines
This study uses grapevine agricultural waste to prepare grapevine-derived biobased activated carbon (AGV) through chemical activation with NaOH after hydrothermal carbonization. A comprehensive analysis of the adsorption performance and mechanisms of AGV for methylene blue (MB) was conducted. The results demonstrated that AGV possesses a highly developed reticular pore structure, with a specific surface area of 3230.57 m2 g−1 and is rich in oxygen functional groups (OFGs). At pH 7.0, AGV achieved a removal rate of 90 % within 30 min, with a maximum adsorption capacity of 661.7 mg g−1, surpassing that of most previously reported activated carbons. Adsorption followed the Langmuir isotherm and pseudo-second-order kinetics, with thermodynamics confirming endothermic and spontaneous MB adsorption. The adsorption mechanism primarily involves chemical adsorption, including electrostatic interactions, pore filling, hydrogen bonding, acid-base interactions, and π-π stacking. The AGV maintained 86.7 % adsorption efficiency after 5 cycles, demonstrating excellent recyclability. This study provides a novel approach for preparing high-performance adsorption materials from waste biomass.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.