Shuting Qiang, Yufeng Che, Mingyang Lu, Yuan Tian, Lin Gao, Jingwen Chen, Tingzhang Hu
{"title":"Buprofezin引起斑马鱼(Danio rerio)胚胎早期发育毒性:形态学、生理和生化反应","authors":"Shuting Qiang, Yufeng Che, Mingyang Lu, Yuan Tian, Lin Gao, Jingwen Chen, Tingzhang Hu","doi":"10.1016/j.aquatox.2025.107371","DOIUrl":null,"url":null,"abstract":"<div><div>Buprofezin (BPFN), a pesticide used to control crop pests and diseases, causes potential harm to aquatic animals and the environment by leaching into aquatic ecosystems. However, there are limited studies on the toxicity of BPFN to aquatic organisms. Using zebrafish embryos, we integrated flow cytometry, qRT-PCR, RNA-seq and other techniques to assess BPFN's developmental toxicity. Additionally, IBRv2 index and Mantel test correlation were applied to comprehensively evaluate the developmental toxicity of BPFN. The results showed that BPFN induced cytotoxicity, including increased reactive oxygen species levels, mitochondrial membrane potential depolarization, and apoptosis, which further resulted in developmental toxicity of zebrafish embryos such as delayed hatching, reduced survival rate, and severe morphological deformities. BPFN also affected the number and distribution of immune cells, resulting in immunotoxicity, and disrupted the endogenous antioxidant system by altering the activities of catalase, superoxide dismutase, and glutathione S-transferase and contents of malondialdehyde and glutathione. Gene expression analysis revealed that BPFN induced changes in the expression of genes associated with oxidative stress, apoptosis, inflammation, swim bladder development, and eye development. In the comprehensive evaluation, BPFN showed the strongest developmental toxic effect in the 20 μM BPFN-treated group at 48 hpf, and there was the significant correlation between embryonic development, oxidative stress, apoptosis, and inflammatory response. The rescue experiment confirmed that astaxanthin can alleviate the embryonic developmental toxicity caused by BPFN to a certain extent. In summary, BPFN induced early developmental toxicity in zebrafish embryos, which might be associated with mitochondria-mediated apoptosis pathway induced by oxidative stress.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"284 ","pages":"Article 107371"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buprofezin causes early developmental toxicity of zebrafish (Danio rerio) embryos: morphological, physiological and biochemical responses\",\"authors\":\"Shuting Qiang, Yufeng Che, Mingyang Lu, Yuan Tian, Lin Gao, Jingwen Chen, Tingzhang Hu\",\"doi\":\"10.1016/j.aquatox.2025.107371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Buprofezin (BPFN), a pesticide used to control crop pests and diseases, causes potential harm to aquatic animals and the environment by leaching into aquatic ecosystems. However, there are limited studies on the toxicity of BPFN to aquatic organisms. Using zebrafish embryos, we integrated flow cytometry, qRT-PCR, RNA-seq and other techniques to assess BPFN's developmental toxicity. Additionally, IBRv2 index and Mantel test correlation were applied to comprehensively evaluate the developmental toxicity of BPFN. The results showed that BPFN induced cytotoxicity, including increased reactive oxygen species levels, mitochondrial membrane potential depolarization, and apoptosis, which further resulted in developmental toxicity of zebrafish embryos such as delayed hatching, reduced survival rate, and severe morphological deformities. BPFN also affected the number and distribution of immune cells, resulting in immunotoxicity, and disrupted the endogenous antioxidant system by altering the activities of catalase, superoxide dismutase, and glutathione S-transferase and contents of malondialdehyde and glutathione. Gene expression analysis revealed that BPFN induced changes in the expression of genes associated with oxidative stress, apoptosis, inflammation, swim bladder development, and eye development. In the comprehensive evaluation, BPFN showed the strongest developmental toxic effect in the 20 μM BPFN-treated group at 48 hpf, and there was the significant correlation between embryonic development, oxidative stress, apoptosis, and inflammatory response. The rescue experiment confirmed that astaxanthin can alleviate the embryonic developmental toxicity caused by BPFN to a certain extent. In summary, BPFN induced early developmental toxicity in zebrafish embryos, which might be associated with mitochondria-mediated apoptosis pathway induced by oxidative stress.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"284 \",\"pages\":\"Article 107371\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25001365\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25001365","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Buprofezin causes early developmental toxicity of zebrafish (Danio rerio) embryos: morphological, physiological and biochemical responses
Buprofezin (BPFN), a pesticide used to control crop pests and diseases, causes potential harm to aquatic animals and the environment by leaching into aquatic ecosystems. However, there are limited studies on the toxicity of BPFN to aquatic organisms. Using zebrafish embryos, we integrated flow cytometry, qRT-PCR, RNA-seq and other techniques to assess BPFN's developmental toxicity. Additionally, IBRv2 index and Mantel test correlation were applied to comprehensively evaluate the developmental toxicity of BPFN. The results showed that BPFN induced cytotoxicity, including increased reactive oxygen species levels, mitochondrial membrane potential depolarization, and apoptosis, which further resulted in developmental toxicity of zebrafish embryos such as delayed hatching, reduced survival rate, and severe morphological deformities. BPFN also affected the number and distribution of immune cells, resulting in immunotoxicity, and disrupted the endogenous antioxidant system by altering the activities of catalase, superoxide dismutase, and glutathione S-transferase and contents of malondialdehyde and glutathione. Gene expression analysis revealed that BPFN induced changes in the expression of genes associated with oxidative stress, apoptosis, inflammation, swim bladder development, and eye development. In the comprehensive evaluation, BPFN showed the strongest developmental toxic effect in the 20 μM BPFN-treated group at 48 hpf, and there was the significant correlation between embryonic development, oxidative stress, apoptosis, and inflammatory response. The rescue experiment confirmed that astaxanthin can alleviate the embryonic developmental toxicity caused by BPFN to a certain extent. In summary, BPFN induced early developmental toxicity in zebrafish embryos, which might be associated with mitochondria-mediated apoptosis pathway induced by oxidative stress.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.