Enrico Bullo , Ping Chen , Ivan Fiala , Vlastimil Smýkal , David Doležel
{"title":"果蝇型定时器与伙伴时钟蛋白的共同进化","authors":"Enrico Bullo , Ping Chen , Ivan Fiala , Vlastimil Smýkal , David Doležel","doi":"10.1016/j.isci.2025.112338","DOIUrl":null,"url":null,"abstract":"<div><div>Drosophila-type timeless (dTIM) is a key clock protein in fruit flies, regulating rhythmicity and light-mediated entrainment. However, functional experiments indicate that its contribution to the clock differs in various insects. Therefore, we conducted a comprehensive phylogenetic analysis of dTIM across animals and dated its origin, gene duplications, and losses. We identified variable and conserved protein domains and pinpointed animal lineages that underwent the biggest changes in dTIM. While dTIM modifications are only mildly affected by changes in the PER protein, even the complete loss of PER in echinoderms had no impact on dTIM. However, changes in dTIM always co-occur with the loss of CRYPTOCHROMES or JETLAG. This is exemplified by the remarkably accelerated evolution of dTIM in phylloxera and aphids. Finally, alternative <em>d-tim</em> splicing, characteristic of <em>Drosophila melanogaster</em> temperature-dependent function, is conserved to some extent in Diptera, albeit with unique alterations. Altogether, this study pinpoints major changes that shaped dTIM evolution.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 5","pages":"Article 112338"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coevolution of Drosophila-type timeless with partner clock proteins\",\"authors\":\"Enrico Bullo , Ping Chen , Ivan Fiala , Vlastimil Smýkal , David Doležel\",\"doi\":\"10.1016/j.isci.2025.112338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drosophila-type timeless (dTIM) is a key clock protein in fruit flies, regulating rhythmicity and light-mediated entrainment. However, functional experiments indicate that its contribution to the clock differs in various insects. Therefore, we conducted a comprehensive phylogenetic analysis of dTIM across animals and dated its origin, gene duplications, and losses. We identified variable and conserved protein domains and pinpointed animal lineages that underwent the biggest changes in dTIM. While dTIM modifications are only mildly affected by changes in the PER protein, even the complete loss of PER in echinoderms had no impact on dTIM. However, changes in dTIM always co-occur with the loss of CRYPTOCHROMES or JETLAG. This is exemplified by the remarkably accelerated evolution of dTIM in phylloxera and aphids. Finally, alternative <em>d-tim</em> splicing, characteristic of <em>Drosophila melanogaster</em> temperature-dependent function, is conserved to some extent in Diptera, albeit with unique alterations. Altogether, this study pinpoints major changes that shaped dTIM evolution.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 5\",\"pages\":\"Article 112338\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225005991\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225005991","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Coevolution of Drosophila-type timeless with partner clock proteins
Drosophila-type timeless (dTIM) is a key clock protein in fruit flies, regulating rhythmicity and light-mediated entrainment. However, functional experiments indicate that its contribution to the clock differs in various insects. Therefore, we conducted a comprehensive phylogenetic analysis of dTIM across animals and dated its origin, gene duplications, and losses. We identified variable and conserved protein domains and pinpointed animal lineages that underwent the biggest changes in dTIM. While dTIM modifications are only mildly affected by changes in the PER protein, even the complete loss of PER in echinoderms had no impact on dTIM. However, changes in dTIM always co-occur with the loss of CRYPTOCHROMES or JETLAG. This is exemplified by the remarkably accelerated evolution of dTIM in phylloxera and aphids. Finally, alternative d-tim splicing, characteristic of Drosophila melanogaster temperature-dependent function, is conserved to some extent in Diptera, albeit with unique alterations. Altogether, this study pinpoints major changes that shaped dTIM evolution.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.