Mengyao Zheng , Yu Liao , Zheng Zhou , Hao Zhang , Chuanwei Li , Zhong Long , Jianfeng Gu
{"title":"增材制造面心立方多主元素合金的柱向等轴转变","authors":"Mengyao Zheng , Yu Liao , Zheng Zhou , Hao Zhang , Chuanwei Li , Zhong Long , Jianfeng Gu","doi":"10.1016/j.addlet.2025.100283","DOIUrl":null,"url":null,"abstract":"<div><div>Columnar-to-equiaxed transition (CET) represents a critical microstructural characteristic in additively manufactured alloys. Precise control over CET is essential for achieving high-performance metallic components through additive manufacturing. In this study, two face-centered cubic multi-principal element alloys (MPEAs), namely CoCrNi and FeCoCrNi, were fabricated via laser directed energy deposition. The influence of process parameter and alloy composition on the CET of the two MPEAs was investigated. The results demonstrated that pronounced CET phenomena were observed in both MPEAs as the laser power increased and the scanning speed decreased. However, significant variations were noted in their CET parameters, equiaxed grain fraction, and crystallographic texture. Subsequently, the impact of process parameters on temperature gradient, solidification rate, and molten pool morphology was investigated via finite element modelling, revealing the formation mechanisms of the grain morphology and texture in additively manufactured CoCrNi and FeCoCrNi alloys. Additionally, the results of thermodynamic calculation revealed significant differences in the growth restriction factors between the two MPEAs, thereby explaining the distinct CET behaviors observed in the two MPEAs.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"14 ","pages":"Article 100283"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Columnar-to-equiaxed transitions in additively manufactured face-centered cubic multi-principal element alloys\",\"authors\":\"Mengyao Zheng , Yu Liao , Zheng Zhou , Hao Zhang , Chuanwei Li , Zhong Long , Jianfeng Gu\",\"doi\":\"10.1016/j.addlet.2025.100283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Columnar-to-equiaxed transition (CET) represents a critical microstructural characteristic in additively manufactured alloys. Precise control over CET is essential for achieving high-performance metallic components through additive manufacturing. In this study, two face-centered cubic multi-principal element alloys (MPEAs), namely CoCrNi and FeCoCrNi, were fabricated via laser directed energy deposition. The influence of process parameter and alloy composition on the CET of the two MPEAs was investigated. The results demonstrated that pronounced CET phenomena were observed in both MPEAs as the laser power increased and the scanning speed decreased. However, significant variations were noted in their CET parameters, equiaxed grain fraction, and crystallographic texture. Subsequently, the impact of process parameters on temperature gradient, solidification rate, and molten pool morphology was investigated via finite element modelling, revealing the formation mechanisms of the grain morphology and texture in additively manufactured CoCrNi and FeCoCrNi alloys. Additionally, the results of thermodynamic calculation revealed significant differences in the growth restriction factors between the two MPEAs, thereby explaining the distinct CET behaviors observed in the two MPEAs.</div></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"14 \",\"pages\":\"Article 100283\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369025000179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Columnar-to-equiaxed transitions in additively manufactured face-centered cubic multi-principal element alloys
Columnar-to-equiaxed transition (CET) represents a critical microstructural characteristic in additively manufactured alloys. Precise control over CET is essential for achieving high-performance metallic components through additive manufacturing. In this study, two face-centered cubic multi-principal element alloys (MPEAs), namely CoCrNi and FeCoCrNi, were fabricated via laser directed energy deposition. The influence of process parameter and alloy composition on the CET of the two MPEAs was investigated. The results demonstrated that pronounced CET phenomena were observed in both MPEAs as the laser power increased and the scanning speed decreased. However, significant variations were noted in their CET parameters, equiaxed grain fraction, and crystallographic texture. Subsequently, the impact of process parameters on temperature gradient, solidification rate, and molten pool morphology was investigated via finite element modelling, revealing the formation mechanisms of the grain morphology and texture in additively manufactured CoCrNi and FeCoCrNi alloys. Additionally, the results of thermodynamic calculation revealed significant differences in the growth restriction factors between the two MPEAs, thereby explaining the distinct CET behaviors observed in the two MPEAs.