{"title":"ZIF-8修饰Mg-MOF-74作为CO2捕集固体吸附剂的合成结构","authors":"Bhumin Than-ardna , Suphatra Hiranphinyophat , Masahiro Matsumoto , Vissanu Meeyoo , Boonyarach Kitiyanan","doi":"10.1016/j.recm.2025.100116","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a ZIF-8/Mg-MOF-74 composite was synthesized using a simple post-modification method. Mg-MOF-74 was grown directly on ZIF-8, forming a hierarchical structure that combines molecular sieving and enhanced adsorption capabilities. The Mg-MOF-74 outer layer, rich in open metal sites (OMS), enables strong CO<sub>2</sub> interactions. The optimized composite, prepared with a Mg<sup>2+</sup>/H<sub>4</sub>dhtp molar ratio of 1:1, exhibited a remarkable surface area of 823.61 m²/g and a pore volume of 0.76 cm<sup>3</sup>/g. It achieved exceptional CO<sub>2</sub> capture, with 4.09 mmol/g in 12 % CO<sub>2</sub> (simulated flue gas) and 0.066 mmol/g from ambient air at 30 °C and 60 % relative humidity. These findings demonstrate the efficacy of simple synthesis techniques in enhancing MOF-based CO<sub>2</sub> capture. This work emphasizes the potential of integrating MOFs for efficient CO<sub>2</sub> adsorption, offering promising strategies to address carbon emissions and environmental challenges.</div></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"4 3","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesized structure of Mg-MOF-74 decorated on ZIF-8 as solid adsorbent for CO2 capture\",\"authors\":\"Bhumin Than-ardna , Suphatra Hiranphinyophat , Masahiro Matsumoto , Vissanu Meeyoo , Boonyarach Kitiyanan\",\"doi\":\"10.1016/j.recm.2025.100116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a ZIF-8/Mg-MOF-74 composite was synthesized using a simple post-modification method. Mg-MOF-74 was grown directly on ZIF-8, forming a hierarchical structure that combines molecular sieving and enhanced adsorption capabilities. The Mg-MOF-74 outer layer, rich in open metal sites (OMS), enables strong CO<sub>2</sub> interactions. The optimized composite, prepared with a Mg<sup>2+</sup>/H<sub>4</sub>dhtp molar ratio of 1:1, exhibited a remarkable surface area of 823.61 m²/g and a pore volume of 0.76 cm<sup>3</sup>/g. It achieved exceptional CO<sub>2</sub> capture, with 4.09 mmol/g in 12 % CO<sub>2</sub> (simulated flue gas) and 0.066 mmol/g from ambient air at 30 °C and 60 % relative humidity. These findings demonstrate the efficacy of simple synthesis techniques in enhancing MOF-based CO<sub>2</sub> capture. This work emphasizes the potential of integrating MOFs for efficient CO<sub>2</sub> adsorption, offering promising strategies to address carbon emissions and environmental challenges.</div></div>\",\"PeriodicalId\":101081,\"journal\":{\"name\":\"Resources Chemicals and Materials\",\"volume\":\"4 3\",\"pages\":\"Article 100116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Chemicals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772443325000261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443325000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesized structure of Mg-MOF-74 decorated on ZIF-8 as solid adsorbent for CO2 capture
In this study, a ZIF-8/Mg-MOF-74 composite was synthesized using a simple post-modification method. Mg-MOF-74 was grown directly on ZIF-8, forming a hierarchical structure that combines molecular sieving and enhanced adsorption capabilities. The Mg-MOF-74 outer layer, rich in open metal sites (OMS), enables strong CO2 interactions. The optimized composite, prepared with a Mg2+/H4dhtp molar ratio of 1:1, exhibited a remarkable surface area of 823.61 m²/g and a pore volume of 0.76 cm3/g. It achieved exceptional CO2 capture, with 4.09 mmol/g in 12 % CO2 (simulated flue gas) and 0.066 mmol/g from ambient air at 30 °C and 60 % relative humidity. These findings demonstrate the efficacy of simple synthesis techniques in enhancing MOF-based CO2 capture. This work emphasizes the potential of integrating MOFs for efficient CO2 adsorption, offering promising strategies to address carbon emissions and environmental challenges.