{"title":"使用数字体积相关和原子力显微镜对皮质骨的定向相关力学性能和骨折扩展进行多尺度研究","authors":"Hutomo Tanoto , Hanwen Fan , Anoushka Prabhu , Fernanda Espinoza , Yuxiao Zhou","doi":"10.1016/j.eml.2025.102338","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the orientation-dependent mechanical properties and fracture propagation behavior in bovine cortical bone, focusing on the role of lamellar plane orientation and its internal hierarchical structures—both of which are critical to bone mechanical strength and fracture resistance. By combining mechanical testing, micro-computed tomography (micro-CT), digital volume correlation (DVC), and atomic force microscopy (AFM), we examined region- and orentation-dependent mechanical properties of cortical bone, as well as the crack propagation influenced by underlying microstructures. At sub-millimeter scale, three-dimensional (3D) displacement and strain captured through <em>in situ</em> three-point bending and DVC provided detailed insights into internal deformation patterns during crack propagation. Distinct crack propagation behaviors were observed in bone samples with lamellar planes oriented parallel and perpendicular to the loading plane. AFM nanomechanical mapping was performed on cracked cross-sections, revealing the heterogeneous mechanical properties within the hierarchical lamellar structure. These micrometer-scale measurements, obtained from orthogonal cracked cross-sections, help explain the different crack propagation mechanisms observed during the bending experiments. Our findings demonstrate that the orientation of lamellar plane— the fundamental structural component of both plexiform and osteonal bone—relative to the loading plane plays a critical role in determining crack paths and local strain distribution. The integrated application of DVC and AFM provides a multiscale perspective on fracture resistance in cortical bone. These insights have important implications for the design of biomimetic materials in bone implants and for improving clinical assessments of fracture risk.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"77 ","pages":"Article 102338"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale investigation of orientation-dependent mechanical properties and fracture propagation in cortical bone using digital volume correlation and atomic force microscopy\",\"authors\":\"Hutomo Tanoto , Hanwen Fan , Anoushka Prabhu , Fernanda Espinoza , Yuxiao Zhou\",\"doi\":\"10.1016/j.eml.2025.102338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the orientation-dependent mechanical properties and fracture propagation behavior in bovine cortical bone, focusing on the role of lamellar plane orientation and its internal hierarchical structures—both of which are critical to bone mechanical strength and fracture resistance. By combining mechanical testing, micro-computed tomography (micro-CT), digital volume correlation (DVC), and atomic force microscopy (AFM), we examined region- and orentation-dependent mechanical properties of cortical bone, as well as the crack propagation influenced by underlying microstructures. At sub-millimeter scale, three-dimensional (3D) displacement and strain captured through <em>in situ</em> three-point bending and DVC provided detailed insights into internal deformation patterns during crack propagation. Distinct crack propagation behaviors were observed in bone samples with lamellar planes oriented parallel and perpendicular to the loading plane. AFM nanomechanical mapping was performed on cracked cross-sections, revealing the heterogeneous mechanical properties within the hierarchical lamellar structure. These micrometer-scale measurements, obtained from orthogonal cracked cross-sections, help explain the different crack propagation mechanisms observed during the bending experiments. Our findings demonstrate that the orientation of lamellar plane— the fundamental structural component of both plexiform and osteonal bone—relative to the loading plane plays a critical role in determining crack paths and local strain distribution. The integrated application of DVC and AFM provides a multiscale perspective on fracture resistance in cortical bone. These insights have important implications for the design of biomimetic materials in bone implants and for improving clinical assessments of fracture risk.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"77 \",\"pages\":\"Article 102338\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431625000501\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000501","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-scale investigation of orientation-dependent mechanical properties and fracture propagation in cortical bone using digital volume correlation and atomic force microscopy
This study investigates the orientation-dependent mechanical properties and fracture propagation behavior in bovine cortical bone, focusing on the role of lamellar plane orientation and its internal hierarchical structures—both of which are critical to bone mechanical strength and fracture resistance. By combining mechanical testing, micro-computed tomography (micro-CT), digital volume correlation (DVC), and atomic force microscopy (AFM), we examined region- and orentation-dependent mechanical properties of cortical bone, as well as the crack propagation influenced by underlying microstructures. At sub-millimeter scale, three-dimensional (3D) displacement and strain captured through in situ three-point bending and DVC provided detailed insights into internal deformation patterns during crack propagation. Distinct crack propagation behaviors were observed in bone samples with lamellar planes oriented parallel and perpendicular to the loading plane. AFM nanomechanical mapping was performed on cracked cross-sections, revealing the heterogeneous mechanical properties within the hierarchical lamellar structure. These micrometer-scale measurements, obtained from orthogonal cracked cross-sections, help explain the different crack propagation mechanisms observed during the bending experiments. Our findings demonstrate that the orientation of lamellar plane— the fundamental structural component of both plexiform and osteonal bone—relative to the loading plane plays a critical role in determining crack paths and local strain distribution. The integrated application of DVC and AFM provides a multiscale perspective on fracture resistance in cortical bone. These insights have important implications for the design of biomimetic materials in bone implants and for improving clinical assessments of fracture risk.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.