Sungju Jung , Jiseon Ha , Jong Hoon Park , Kyung Hyun Yoo
{"title":"解码SPP1调控:其在疾病进展中的作用的遗传和非遗传见解","authors":"Sungju Jung , Jiseon Ha , Jong Hoon Park , Kyung Hyun Yoo","doi":"10.1016/j.mocell.2025.100215","DOIUrl":null,"url":null,"abstract":"<div><div>Secreted phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional glycoprotein that plays a critical role in various physiological processes, including cell adhesion, chemotaxis, immune regulation, and tissue remodeling. Originally identified as a key component of the bone matrix, SPP1 is now recognized for its broad involvement in numerous tissues and significant impact on both normal physiology and disease progression. Dysregulation of SPP1 has been strongly implicated in the pathogenesis and progression of several diseases, including cancer, cardiovascular diseases, autoimmune disorders, and chronic inflammatory conditions. The expression of <em>SPP1</em> is tightly regulated by genetic and nongenetic mechanisms. Genetic alterations, such as single-nucleotide polymorphisms, insertions and deletions, and structural variations within the <em>SPP1</em> gene, have been associated with increased susceptibility to various diseases, influencing disease severity and outcomes. Additionally, nongenetic regulations, including DNA methylation, histone modifications, and long noncoding RNAs, play crucial roles in modulating <em>SPP1</em> expression in response to environmental and cellular signals. This review provides a comprehensive overview of the genetic and nongenetic regulatory mechanisms governing SPP1 and examines their implications in disease pathogenesis. By integrating recent findings, this review highlights the complex interplay between genetic predispositions and nongenetic regulations in determining SPP1 activity and offers new insights into its role as a potential biomarker and therapeutic target. Understanding these regulatory pathways is essential for the development of targeted interventions for diseases in which SPP1 plays a pivotal role.</div></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":"48 6","pages":"Article 100215"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding SPP1 regulation: Genetic and nongenetic insights into its role in disease progression\",\"authors\":\"Sungju Jung , Jiseon Ha , Jong Hoon Park , Kyung Hyun Yoo\",\"doi\":\"10.1016/j.mocell.2025.100215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Secreted phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional glycoprotein that plays a critical role in various physiological processes, including cell adhesion, chemotaxis, immune regulation, and tissue remodeling. Originally identified as a key component of the bone matrix, SPP1 is now recognized for its broad involvement in numerous tissues and significant impact on both normal physiology and disease progression. Dysregulation of SPP1 has been strongly implicated in the pathogenesis and progression of several diseases, including cancer, cardiovascular diseases, autoimmune disorders, and chronic inflammatory conditions. The expression of <em>SPP1</em> is tightly regulated by genetic and nongenetic mechanisms. Genetic alterations, such as single-nucleotide polymorphisms, insertions and deletions, and structural variations within the <em>SPP1</em> gene, have been associated with increased susceptibility to various diseases, influencing disease severity and outcomes. Additionally, nongenetic regulations, including DNA methylation, histone modifications, and long noncoding RNAs, play crucial roles in modulating <em>SPP1</em> expression in response to environmental and cellular signals. This review provides a comprehensive overview of the genetic and nongenetic regulatory mechanisms governing SPP1 and examines their implications in disease pathogenesis. By integrating recent findings, this review highlights the complex interplay between genetic predispositions and nongenetic regulations in determining SPP1 activity and offers new insights into its role as a potential biomarker and therapeutic target. Understanding these regulatory pathways is essential for the development of targeted interventions for diseases in which SPP1 plays a pivotal role.</div></div>\",\"PeriodicalId\":18795,\"journal\":{\"name\":\"Molecules and Cells\",\"volume\":\"48 6\",\"pages\":\"Article 100215\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules and Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1016847825000391\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847825000391","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Decoding SPP1 regulation: Genetic and nongenetic insights into its role in disease progression
Secreted phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional glycoprotein that plays a critical role in various physiological processes, including cell adhesion, chemotaxis, immune regulation, and tissue remodeling. Originally identified as a key component of the bone matrix, SPP1 is now recognized for its broad involvement in numerous tissues and significant impact on both normal physiology and disease progression. Dysregulation of SPP1 has been strongly implicated in the pathogenesis and progression of several diseases, including cancer, cardiovascular diseases, autoimmune disorders, and chronic inflammatory conditions. The expression of SPP1 is tightly regulated by genetic and nongenetic mechanisms. Genetic alterations, such as single-nucleotide polymorphisms, insertions and deletions, and structural variations within the SPP1 gene, have been associated with increased susceptibility to various diseases, influencing disease severity and outcomes. Additionally, nongenetic regulations, including DNA methylation, histone modifications, and long noncoding RNAs, play crucial roles in modulating SPP1 expression in response to environmental and cellular signals. This review provides a comprehensive overview of the genetic and nongenetic regulatory mechanisms governing SPP1 and examines their implications in disease pathogenesis. By integrating recent findings, this review highlights the complex interplay between genetic predispositions and nongenetic regulations in determining SPP1 activity and offers new insights into its role as a potential biomarker and therapeutic target. Understanding these regulatory pathways is essential for the development of targeted interventions for diseases in which SPP1 plays a pivotal role.
期刊介绍:
Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is "Mol. Cells". Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.