{"title":"脑COX-1与[11C]PS13的选择性定位:来自人PET成像的药代动力学证据","authors":"Kiana Orangi , Kimiya Batebi , Farnoosh Vosough , Mahdiyeh Nozad Varjovi , Fatemeh Salehian , Sahar Mesbah , Mehrnaz Salahi , Sajjad Hajihosseini , Mohammad Yousef Fazel , Saman Zaman , Reza Hossein Zadeh , Alaleh Alizadeh , Mahsa Asadi Anar , Niloofar Deravi","doi":"10.1016/j.ibneur.2025.04.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aim</h3><div>Arachidonic acid is converted by cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) to prostaglandin H2, which has proinflammatory properties. The new PET radioligand [11 C]PS13 exhibits superior in vivo selectivity for COX-1 in nonhuman primates compared to COX-2. This study aimed to investigate [11 C]PS13 pharmacologically selectivity and substantial binding to COX-1 in the human brain.</div></div><div><h3>Material and methods</h3><div>Eight healthy volunteers had baseline [11 C]PS13 brain PET scans, and then images were blocked with either aspirin, celecoxib, or ketoprofen. The participants underwent two 90-minute [11 C]PS13 PET scans with radio metabolite-corrected arterial input function at baseline and approximately two hours after they received 75 mg of ketoprofen orally</div></div><div><h3>Result</h3><div>This study on [11 C]PS13 brain PET scans showed that ketoprofen and celecoxib selectively bind to COX-1 in the human brain. The occupancy plot showed a positive correlation with plasma ketoprofen concentration, with the highest binding potentials in the calcarine and lingual gyrus of the occipital region. The occupancy for COX-1 was about 49 % and 27 % for ketoprofen and celecoxib, respectively.</div></div><div><h3>Conclusion</h3><div>Ketoprofen demonstrated the highest selectivity for COX-1, while celecoxib exhibited partial occupancy likely due to dose- or time-dependent COX-1 inhibition. Aspirin showed minimal effect. Given the small sample size (n = 8), further studies with larger cohorts are warranted to confirm these findings and assess pharmacokinetic influences more thoroughly.</div></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":"18 ","pages":"Pages 657-662"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Mapping of Brain COX-1 with [11C]PS13: Pharmacokinetic Evidence from human PET Imaging\",\"authors\":\"Kiana Orangi , Kimiya Batebi , Farnoosh Vosough , Mahdiyeh Nozad Varjovi , Fatemeh Salehian , Sahar Mesbah , Mehrnaz Salahi , Sajjad Hajihosseini , Mohammad Yousef Fazel , Saman Zaman , Reza Hossein Zadeh , Alaleh Alizadeh , Mahsa Asadi Anar , Niloofar Deravi\",\"doi\":\"10.1016/j.ibneur.2025.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and aim</h3><div>Arachidonic acid is converted by cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) to prostaglandin H2, which has proinflammatory properties. The new PET radioligand [11 C]PS13 exhibits superior in vivo selectivity for COX-1 in nonhuman primates compared to COX-2. This study aimed to investigate [11 C]PS13 pharmacologically selectivity and substantial binding to COX-1 in the human brain.</div></div><div><h3>Material and methods</h3><div>Eight healthy volunteers had baseline [11 C]PS13 brain PET scans, and then images were blocked with either aspirin, celecoxib, or ketoprofen. The participants underwent two 90-minute [11 C]PS13 PET scans with radio metabolite-corrected arterial input function at baseline and approximately two hours after they received 75 mg of ketoprofen orally</div></div><div><h3>Result</h3><div>This study on [11 C]PS13 brain PET scans showed that ketoprofen and celecoxib selectively bind to COX-1 in the human brain. The occupancy plot showed a positive correlation with plasma ketoprofen concentration, with the highest binding potentials in the calcarine and lingual gyrus of the occipital region. The occupancy for COX-1 was about 49 % and 27 % for ketoprofen and celecoxib, respectively.</div></div><div><h3>Conclusion</h3><div>Ketoprofen demonstrated the highest selectivity for COX-1, while celecoxib exhibited partial occupancy likely due to dose- or time-dependent COX-1 inhibition. Aspirin showed minimal effect. Given the small sample size (n = 8), further studies with larger cohorts are warranted to confirm these findings and assess pharmacokinetic influences more thoroughly.</div></div>\",\"PeriodicalId\":13195,\"journal\":{\"name\":\"IBRO Neuroscience Reports\",\"volume\":\"18 \",\"pages\":\"Pages 657-662\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBRO Neuroscience Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667242125000594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242125000594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Selective Mapping of Brain COX-1 with [11C]PS13: Pharmacokinetic Evidence from human PET Imaging
Background and aim
Arachidonic acid is converted by cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) to prostaglandin H2, which has proinflammatory properties. The new PET radioligand [11 C]PS13 exhibits superior in vivo selectivity for COX-1 in nonhuman primates compared to COX-2. This study aimed to investigate [11 C]PS13 pharmacologically selectivity and substantial binding to COX-1 in the human brain.
Material and methods
Eight healthy volunteers had baseline [11 C]PS13 brain PET scans, and then images were blocked with either aspirin, celecoxib, or ketoprofen. The participants underwent two 90-minute [11 C]PS13 PET scans with radio metabolite-corrected arterial input function at baseline and approximately two hours after they received 75 mg of ketoprofen orally
Result
This study on [11 C]PS13 brain PET scans showed that ketoprofen and celecoxib selectively bind to COX-1 in the human brain. The occupancy plot showed a positive correlation with plasma ketoprofen concentration, with the highest binding potentials in the calcarine and lingual gyrus of the occipital region. The occupancy for COX-1 was about 49 % and 27 % for ketoprofen and celecoxib, respectively.
Conclusion
Ketoprofen demonstrated the highest selectivity for COX-1, while celecoxib exhibited partial occupancy likely due to dose- or time-dependent COX-1 inhibition. Aspirin showed minimal effect. Given the small sample size (n = 8), further studies with larger cohorts are warranted to confirm these findings and assess pharmacokinetic influences more thoroughly.