由可数集合的闭包决定的拓扑性质

IF 0.6 4区 数学 Q3 MATHEMATICS
V.V. Tkachuk
{"title":"由可数集合的闭包决定的拓扑性质","authors":"V.V. Tkachuk","doi":"10.1016/j.topol.2025.109393","DOIUrl":null,"url":null,"abstract":"<div><div>We establish that a locally convex space must be metrizable if it has a Čech-complete dense subspace and show that there are locally convex spaces <em>L</em> of arbitrarily large extent such that <span><math><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></math></span> is <em>σ</em>-compact for any countable set <span><math><mi>A</mi><mo>⊂</mo><mi>L</mi></math></span>. Under Jensen's Axiom (⋄), we give an example of a metrizable space <em>M</em> which does not have a dense Čech-complete subspace while <span><math><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></math></span> is Čech-complete for every countable set <span><math><mi>A</mi><mo>⊂</mo><mi>M</mi></math></span>. Our results give a consistent answer to two published open questions.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"369 ","pages":"Article 109393"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological properties determined by closures of countable sets\",\"authors\":\"V.V. Tkachuk\",\"doi\":\"10.1016/j.topol.2025.109393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish that a locally convex space must be metrizable if it has a Čech-complete dense subspace and show that there are locally convex spaces <em>L</em> of arbitrarily large extent such that <span><math><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></math></span> is <em>σ</em>-compact for any countable set <span><math><mi>A</mi><mo>⊂</mo><mi>L</mi></math></span>. Under Jensen's Axiom (⋄), we give an example of a metrizable space <em>M</em> which does not have a dense Čech-complete subspace while <span><math><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></math></span> is Čech-complete for every countable set <span><math><mi>A</mi><mo>⊂</mo><mi>M</mi></math></span>. Our results give a consistent answer to two published open questions.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"369 \",\"pages\":\"Article 109393\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125001919\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125001919","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个局部凸空间如果有Čech-complete稠密子空间就一定是可度量的,并且证明了存在任意大范围的局部凸空间L,使得a对任意可数集合a∧L来说是σ-紧的。在Jensen公理()下,我们给出了一个可度量空间M的例子,对于每一个可数集合a∧M,它没有稠密的Čech-complete子空间,而a´是Čech-complete。我们的结果对两个公开的问题给出了一致的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological properties determined by closures of countable sets
We establish that a locally convex space must be metrizable if it has a Čech-complete dense subspace and show that there are locally convex spaces L of arbitrarily large extent such that A is σ-compact for any countable set AL. Under Jensen's Axiom (⋄), we give an example of a metrizable space M which does not have a dense Čech-complete subspace while A is Čech-complete for every countable set AM. Our results give a consistent answer to two published open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信