Dou Yang , Tong Shao , Peng Li , Xiaoshuang Wang , Suyuan Zeng , Min Hong , Rui Li , Qiaoli Yue
{"title":"聚乙烯醇膜上基于碳点聚集诱导发射增强的便携式精氨酸传感","authors":"Dou Yang , Tong Shao , Peng Li , Xiaoshuang Wang , Suyuan Zeng , Min Hong , Rui Li , Qiaoli Yue","doi":"10.1016/j.talanta.2025.128177","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dots (CDs) were highly promised nanomaterials for application in food analysis, owing to their exceptional optical properties, superior photostability, and negligible biological toxicity. N-doped CDs (NCDs) were synthesized via a straightforward hydrothermal method utilizing folic acid as only one precursor material. NCDs exhibited deep blue fluorescence under an ultraviolet lamp with a quantum yield (QY) of 14.54 %. In the presence of arginine (Arg), there was a noticeable redshift of 10 nm in the maximum emission wavelength of NCDs, accompanied by fluorescence transition from dark blue to bright blue. The QY of NCDs was 16.71 % in the presence of Arg. In other words, NCDs showed aggregation-induced emission enhancement (AIEE) in the presence of Arg. The fluorescence enhancement exhibited a strong linear correlation with Arg concentration within the range of 0–300 μM, and the limit of detection was 0.31 μM. Furthermore, to facilitate Arg detection, a portable Arg sensor was developed using a polyvinyl alcohol membrane-assisted design. The sensor demonstrated satisfactory performance in detecting Arg in real samples. These findings highlighted the versatile capabilities of NCDs with AIEE properties, paving the way for their potential applications in food analysis.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"294 ","pages":"Article 128177"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portable arginine sensing on polyvinyl alcohol membrane based on aggregation-induced emission enhancement of carbon dots\",\"authors\":\"Dou Yang , Tong Shao , Peng Li , Xiaoshuang Wang , Suyuan Zeng , Min Hong , Rui Li , Qiaoli Yue\",\"doi\":\"10.1016/j.talanta.2025.128177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon dots (CDs) were highly promised nanomaterials for application in food analysis, owing to their exceptional optical properties, superior photostability, and negligible biological toxicity. N-doped CDs (NCDs) were synthesized via a straightforward hydrothermal method utilizing folic acid as only one precursor material. NCDs exhibited deep blue fluorescence under an ultraviolet lamp with a quantum yield (QY) of 14.54 %. In the presence of arginine (Arg), there was a noticeable redshift of 10 nm in the maximum emission wavelength of NCDs, accompanied by fluorescence transition from dark blue to bright blue. The QY of NCDs was 16.71 % in the presence of Arg. In other words, NCDs showed aggregation-induced emission enhancement (AIEE) in the presence of Arg. The fluorescence enhancement exhibited a strong linear correlation with Arg concentration within the range of 0–300 μM, and the limit of detection was 0.31 μM. Furthermore, to facilitate Arg detection, a portable Arg sensor was developed using a polyvinyl alcohol membrane-assisted design. The sensor demonstrated satisfactory performance in detecting Arg in real samples. These findings highlighted the versatile capabilities of NCDs with AIEE properties, paving the way for their potential applications in food analysis.</div></div>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"294 \",\"pages\":\"Article 128177\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039914025006678\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025006678","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Portable arginine sensing on polyvinyl alcohol membrane based on aggregation-induced emission enhancement of carbon dots
Carbon dots (CDs) were highly promised nanomaterials for application in food analysis, owing to their exceptional optical properties, superior photostability, and negligible biological toxicity. N-doped CDs (NCDs) were synthesized via a straightforward hydrothermal method utilizing folic acid as only one precursor material. NCDs exhibited deep blue fluorescence under an ultraviolet lamp with a quantum yield (QY) of 14.54 %. In the presence of arginine (Arg), there was a noticeable redshift of 10 nm in the maximum emission wavelength of NCDs, accompanied by fluorescence transition from dark blue to bright blue. The QY of NCDs was 16.71 % in the presence of Arg. In other words, NCDs showed aggregation-induced emission enhancement (AIEE) in the presence of Arg. The fluorescence enhancement exhibited a strong linear correlation with Arg concentration within the range of 0–300 μM, and the limit of detection was 0.31 μM. Furthermore, to facilitate Arg detection, a portable Arg sensor was developed using a polyvinyl alcohol membrane-assisted design. The sensor demonstrated satisfactory performance in detecting Arg in real samples. These findings highlighted the versatile capabilities of NCDs with AIEE properties, paving the way for their potential applications in food analysis.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.