{"title":"扩散粘性波动方程的可杂化不连续伽辽金方法及超收敛分析","authors":"Lu Wang, Minfu Feng","doi":"10.1016/j.amc.2025.129471","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of <span><math><mi>m</mi><mo>+</mo><mn>1</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm where <em>m</em> is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of <span><math><mi>m</mi><mo>+</mo><mn>2</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical tests verify our analysis.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"501 ","pages":"Article 129471"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the hybridizable discontinuous Galerkin method and superconvergence analysis for the diffusive viscous wave equation\",\"authors\":\"Lu Wang, Minfu Feng\",\"doi\":\"10.1016/j.amc.2025.129471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of <span><math><mi>m</mi><mo>+</mo><mn>1</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm where <em>m</em> is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of <span><math><mi>m</mi><mo>+</mo><mn>2</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical tests verify our analysis.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"501 \",\"pages\":\"Article 129471\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001973\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001973","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the hybridizable discontinuous Galerkin method and superconvergence analysis for the diffusive viscous wave equation
This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of in the norm where m is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of in the norm. Finally, numerical tests verify our analysis.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.