扩散粘性波动方程的可杂化不连续伽辽金方法及超收敛分析

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Lu Wang, Minfu Feng
{"title":"扩散粘性波动方程的可杂化不连续伽辽金方法及超收敛分析","authors":"Lu Wang,&nbsp;Minfu Feng","doi":"10.1016/j.amc.2025.129471","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of <span><math><mi>m</mi><mo>+</mo><mn>1</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm where <em>m</em> is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of <span><math><mi>m</mi><mo>+</mo><mn>2</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical tests verify our analysis.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"501 ","pages":"Article 129471"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the hybridizable discontinuous Galerkin method and superconvergence analysis for the diffusive viscous wave equation\",\"authors\":\"Lu Wang,&nbsp;Minfu Feng\",\"doi\":\"10.1016/j.amc.2025.129471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of <span><math><mi>m</mi><mo>+</mo><mn>1</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm where <em>m</em> is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of <span><math><mi>m</mi><mo>+</mo><mn>2</mn></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical tests verify our analysis.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"501 \",\"pages\":\"Article 129471\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001973\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001973","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了求解扩散粘性波动方程的可杂化不连续伽辽金(HDG)方法。我们提供了半离散和全离散格式的理论分析。我们的结果证明了位移和通量在L2范数中以m+1阶收敛,其中m是多项式的阶。我们还给出了一个超收敛分析,表明局部后处理变量在L2范数上以m+2阶收敛。最后,数值试验验证了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the hybridizable discontinuous Galerkin method and superconvergence analysis for the diffusive viscous wave equation
This paper studies the hybridizable discontinuous Galerkin (HDG) method for solving the diffusive viscous wave equation. We provide a theoretical analysis of both the semi-discrete and fully-discrete schemes. Our results demonstrate that the displacement and the flux converge with an order of m+1 in the L2 norm where m is the degree of polynomials. We also present a superconvergence analysis, indicating that the local post-processed variable converges with an order of m+2 in the L2 norm. Finally, numerical tests verify our analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信