{"title":"用分段仿射函数和神经网络表示实际非光滑控制李雅普诺夫函数","authors":"Lars Grüne , Mario Sperl , Debasish Chatterjee","doi":"10.1016/j.sysconle.2025.106103","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we give conditions under which control Lyapunov functions exist that can be represented by either piecewise affine functions or by neural networks with a suitable number of ReLU layers. The results provide a theoretical foundation for recent computational approaches for computing control Lyapunov functions with optimization-based and machine-learning techniques.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"202 ","pages":"Article 106103"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks\",\"authors\":\"Lars Grüne , Mario Sperl , Debasish Chatterjee\",\"doi\":\"10.1016/j.sysconle.2025.106103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we give conditions under which control Lyapunov functions exist that can be represented by either piecewise affine functions or by neural networks with a suitable number of ReLU layers. The results provide a theoretical foundation for recent computational approaches for computing control Lyapunov functions with optimization-based and machine-learning techniques.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"202 \",\"pages\":\"Article 106103\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125000854\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125000854","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks
In this paper we give conditions under which control Lyapunov functions exist that can be represented by either piecewise affine functions or by neural networks with a suitable number of ReLU layers. The results provide a theoretical foundation for recent computational approaches for computing control Lyapunov functions with optimization-based and machine-learning techniques.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.