Samantha C. Lauby , Isha Agarwal , Hannah E. Lapp , Melissa Salazar , Sofiia Semyrenko , Danyal Chauhan , Amy E. Margolis , Frances A. Champagne
{"title":"产前双酚暴露、产后母亲护理和后代性别在预测与大鼠焦虑样行为相关的DNA甲基化中的相互作用","authors":"Samantha C. Lauby , Isha Agarwal , Hannah E. Lapp , Melissa Salazar , Sofiia Semyrenko , Danyal Chauhan , Amy E. Margolis , Frances A. Champagne","doi":"10.1016/j.yhbeh.2025.105745","DOIUrl":null,"url":null,"abstract":"<div><div>Prenatal exposure to endocrine disrupting chemicals, such as bisphenols, can alter neurodevelopmental trajectories and have a lasting neurobehavioral impact through epigenetic pathways. However, outcomes associated with prenatal bisphenol exposure may also be shaped by the postnatal environment and collectively these environmental effects may be sex-specific. Thus, an integrative research design that includes multiple early life exposures and considers sex differences may be essential for predicting outcomes. In the current study, we use a multivariate approach to examine the contributions of prenatal bisphenol exposure, postnatal maternal care, and offspring sex to variation in DNA methylation of well-studied candidate genes (NR3C1, BDNF, OXTR) in the ventral hippocampus and amygdala of adult Long-Evans rats. Main effects of postnatal maternal care and interactions with prenatal bisphenol exposure were consistently found for DNA methylation within the NR3C1 gene (ventral hippocampus) and within the BDNF and OXTR genes (amygdala). Sex-specific effects were also found across all analyses. Overall, our findings suggest that both early-life factors (prenatal and postnatal) and offspring sex contribute to variation in DNA methylation in genes and brain regions relevant for the expression of anxiety-like behavior. These results highlight the need to consider the brain region-specific effects of multiple exposures in males and females to understand the lasting effects of early environments.</div></div>","PeriodicalId":13001,"journal":{"name":"Hormones and Behavior","volume":"172 ","pages":"Article 105745"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay between prenatal bisphenol exposure, postnatal maternal care, and offspring sex in predicting DNA methylation relevant to anxiety-like behavior in rats\",\"authors\":\"Samantha C. Lauby , Isha Agarwal , Hannah E. Lapp , Melissa Salazar , Sofiia Semyrenko , Danyal Chauhan , Amy E. Margolis , Frances A. Champagne\",\"doi\":\"10.1016/j.yhbeh.2025.105745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prenatal exposure to endocrine disrupting chemicals, such as bisphenols, can alter neurodevelopmental trajectories and have a lasting neurobehavioral impact through epigenetic pathways. However, outcomes associated with prenatal bisphenol exposure may also be shaped by the postnatal environment and collectively these environmental effects may be sex-specific. Thus, an integrative research design that includes multiple early life exposures and considers sex differences may be essential for predicting outcomes. In the current study, we use a multivariate approach to examine the contributions of prenatal bisphenol exposure, postnatal maternal care, and offspring sex to variation in DNA methylation of well-studied candidate genes (NR3C1, BDNF, OXTR) in the ventral hippocampus and amygdala of adult Long-Evans rats. Main effects of postnatal maternal care and interactions with prenatal bisphenol exposure were consistently found for DNA methylation within the NR3C1 gene (ventral hippocampus) and within the BDNF and OXTR genes (amygdala). Sex-specific effects were also found across all analyses. Overall, our findings suggest that both early-life factors (prenatal and postnatal) and offspring sex contribute to variation in DNA methylation in genes and brain regions relevant for the expression of anxiety-like behavior. These results highlight the need to consider the brain region-specific effects of multiple exposures in males and females to understand the lasting effects of early environments.</div></div>\",\"PeriodicalId\":13001,\"journal\":{\"name\":\"Hormones and Behavior\",\"volume\":\"172 \",\"pages\":\"Article 105745\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones and Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0018506X25000716\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones and Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0018506X25000716","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Interplay between prenatal bisphenol exposure, postnatal maternal care, and offspring sex in predicting DNA methylation relevant to anxiety-like behavior in rats
Prenatal exposure to endocrine disrupting chemicals, such as bisphenols, can alter neurodevelopmental trajectories and have a lasting neurobehavioral impact through epigenetic pathways. However, outcomes associated with prenatal bisphenol exposure may also be shaped by the postnatal environment and collectively these environmental effects may be sex-specific. Thus, an integrative research design that includes multiple early life exposures and considers sex differences may be essential for predicting outcomes. In the current study, we use a multivariate approach to examine the contributions of prenatal bisphenol exposure, postnatal maternal care, and offspring sex to variation in DNA methylation of well-studied candidate genes (NR3C1, BDNF, OXTR) in the ventral hippocampus and amygdala of adult Long-Evans rats. Main effects of postnatal maternal care and interactions with prenatal bisphenol exposure were consistently found for DNA methylation within the NR3C1 gene (ventral hippocampus) and within the BDNF and OXTR genes (amygdala). Sex-specific effects were also found across all analyses. Overall, our findings suggest that both early-life factors (prenatal and postnatal) and offspring sex contribute to variation in DNA methylation in genes and brain regions relevant for the expression of anxiety-like behavior. These results highlight the need to consider the brain region-specific effects of multiple exposures in males and females to understand the lasting effects of early environments.
期刊介绍:
Hormones and Behavior publishes original research articles, reviews and special issues concerning hormone-brain-behavior relationships, broadly defined. The journal''s scope ranges from laboratory and field studies concerning neuroendocrine as well as endocrine mechanisms controlling the development or adult expression of behavior to studies concerning the environmental control and evolutionary significance of hormone-behavior relationships. The journal welcomes studies conducted on species ranging from invertebrates to mammals, including humans.