Sourav Mondal, Julia Netz, David Hunger, Simon Suhr, Biprajit Sarkar, Joris van Slageren, Andreas Köhn and Alessandro Lunghi*,
{"title":"强交换耦合存在下单分子磁体的自旋声子弛豫机制","authors":"Sourav Mondal, Julia Netz, David Hunger, Simon Suhr, Biprajit Sarkar, Joris van Slageren, Andreas Köhn and Alessandro Lunghi*, ","doi":"10.1021/acscentsci.4c0213910.1021/acscentsci.4c02139","DOIUrl":null,"url":null,"abstract":"<p >Magnetic relaxation in coordination compounds is largely dominated by the interaction of the spin with phonons. Although a comprehensive understanding of spin-phonon relaxation has been achieved for mononuclear complexes, only a qualitative picture is available for polynuclear compounds. Large zero-field splitting and exchange coupling values have been empirically found to strongly suppress spin relaxation and have been used as the main guideline for designing molecular compounds with long spin lifetime, also known as single-molecule magnets, but no microscopic rationale for these observations is available. Here we fill this critical knowledge gap by providing a full first-principles description of spin-phonon relaxation in an air-stable Co(II) dimer with both large single-ion anisotropy and exchange coupling. Simulations reproduce the experimental relaxation data with excellent accuracy and provide a microscopic understanding of Orbach and Raman relaxation pathways and their dependency on exchange coupling, zero-field splitting, and molecular vibrations. Theory and numerical simulations show that increasing cluster nuclearity to just four cobalt units would lead to a complete suppression of low-temperature Raman relaxation. These results hold a general validity for polynuclear single-molecule magnets, providing a deeper understanding of their relaxation and revised strategies for their improvement.</p><p >Spin relaxation in polynuclear coordination complexes is unraveled through ab initio open quantum system simulations, revealing new strategies to fully suppress Raman relaxation at low temperature.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 4","pages":"550–559 550–559"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02139","citationCount":"0","resultStr":"{\"title\":\"The Spin-Phonon Relaxation Mechanism of Single-Molecule Magnets in the Presence of Strong Exchange Coupling\",\"authors\":\"Sourav Mondal, Julia Netz, David Hunger, Simon Suhr, Biprajit Sarkar, Joris van Slageren, Andreas Köhn and Alessandro Lunghi*, \",\"doi\":\"10.1021/acscentsci.4c0213910.1021/acscentsci.4c02139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Magnetic relaxation in coordination compounds is largely dominated by the interaction of the spin with phonons. Although a comprehensive understanding of spin-phonon relaxation has been achieved for mononuclear complexes, only a qualitative picture is available for polynuclear compounds. Large zero-field splitting and exchange coupling values have been empirically found to strongly suppress spin relaxation and have been used as the main guideline for designing molecular compounds with long spin lifetime, also known as single-molecule magnets, but no microscopic rationale for these observations is available. Here we fill this critical knowledge gap by providing a full first-principles description of spin-phonon relaxation in an air-stable Co(II) dimer with both large single-ion anisotropy and exchange coupling. Simulations reproduce the experimental relaxation data with excellent accuracy and provide a microscopic understanding of Orbach and Raman relaxation pathways and their dependency on exchange coupling, zero-field splitting, and molecular vibrations. Theory and numerical simulations show that increasing cluster nuclearity to just four cobalt units would lead to a complete suppression of low-temperature Raman relaxation. These results hold a general validity for polynuclear single-molecule magnets, providing a deeper understanding of their relaxation and revised strategies for their improvement.</p><p >Spin relaxation in polynuclear coordination complexes is unraveled through ab initio open quantum system simulations, revealing new strategies to fully suppress Raman relaxation at low temperature.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 4\",\"pages\":\"550–559 550–559\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.4c02139\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c02139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Spin-Phonon Relaxation Mechanism of Single-Molecule Magnets in the Presence of Strong Exchange Coupling
Magnetic relaxation in coordination compounds is largely dominated by the interaction of the spin with phonons. Although a comprehensive understanding of spin-phonon relaxation has been achieved for mononuclear complexes, only a qualitative picture is available for polynuclear compounds. Large zero-field splitting and exchange coupling values have been empirically found to strongly suppress spin relaxation and have been used as the main guideline for designing molecular compounds with long spin lifetime, also known as single-molecule magnets, but no microscopic rationale for these observations is available. Here we fill this critical knowledge gap by providing a full first-principles description of spin-phonon relaxation in an air-stable Co(II) dimer with both large single-ion anisotropy and exchange coupling. Simulations reproduce the experimental relaxation data with excellent accuracy and provide a microscopic understanding of Orbach and Raman relaxation pathways and their dependency on exchange coupling, zero-field splitting, and molecular vibrations. Theory and numerical simulations show that increasing cluster nuclearity to just four cobalt units would lead to a complete suppression of low-temperature Raman relaxation. These results hold a general validity for polynuclear single-molecule magnets, providing a deeper understanding of their relaxation and revised strategies for their improvement.
Spin relaxation in polynuclear coordination complexes is unraveled through ab initio open quantum system simulations, revealing new strategies to fully suppress Raman relaxation at low temperature.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.