高熵尖晶石氧化物纳米结构作为固体氧化物燃料电池的稳定阴极

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaohui Chen, Ben Ma*, Chen Dang, Jiahao Song and Yingke Zhou*, 
{"title":"高熵尖晶石氧化物纳米结构作为固体氧化物燃料电池的稳定阴极","authors":"Zhaohui Chen,&nbsp;Ben Ma*,&nbsp;Chen Dang,&nbsp;Jiahao Song and Yingke Zhou*,&nbsp;","doi":"10.1021/acs.nanolett.4c0646110.1021/acs.nanolett.4c06461","DOIUrl":null,"url":null,"abstract":"<p >Solid oxide fuel cells (SOFCs) represent a promising clean energy technology for efficient chemical-to-electrical energy conversion with minimal environmental impact. However, the development of cathode materials that can maintain both high performance and long-term stability remains challenging, particularly due to the degradation of nanostructured cathodes caused by particle coarsening. This study employs an impregnation method to fabricate high-entropy spinel oxide (Mg<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Cu<sub>0.2</sub>)Fe<sub>2</sub>O<sub>4</sub> (MFCNCF) nanoparticles with varying loadings on a porous Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> (GDC) skeleton. The optimized cathode with 30 wt % MFCNCF loading achieves a remarkably low polarization resistance of 0.12 Ω·cm<sup>2</sup> and maximum power density of 1063.94 mW·cm<sup>–2</sup> at 800 °C. Most significantly, the entropy stabilization effect enables the high-entropy spinel oxide nanoparticles to maintain their microstructure throughout 240 h of operation with negligible performance degradation. The study introduces a novel strategy combining high-entropy design with nanostructure engineering to develop stable and high-performance cathode materials for SOFCs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 16","pages":"6421–6428 6421–6428"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Entropy Spinel Oxide Nanostructures as Stable Cathodes for Solid Oxide Fuel Cells\",\"authors\":\"Zhaohui Chen,&nbsp;Ben Ma*,&nbsp;Chen Dang,&nbsp;Jiahao Song and Yingke Zhou*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0646110.1021/acs.nanolett.4c06461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solid oxide fuel cells (SOFCs) represent a promising clean energy technology for efficient chemical-to-electrical energy conversion with minimal environmental impact. However, the development of cathode materials that can maintain both high performance and long-term stability remains challenging, particularly due to the degradation of nanostructured cathodes caused by particle coarsening. This study employs an impregnation method to fabricate high-entropy spinel oxide (Mg<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Cu<sub>0.2</sub>)Fe<sub>2</sub>O<sub>4</sub> (MFCNCF) nanoparticles with varying loadings on a porous Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> (GDC) skeleton. The optimized cathode with 30 wt % MFCNCF loading achieves a remarkably low polarization resistance of 0.12 Ω·cm<sup>2</sup> and maximum power density of 1063.94 mW·cm<sup>–2</sup> at 800 °C. Most significantly, the entropy stabilization effect enables the high-entropy spinel oxide nanoparticles to maintain their microstructure throughout 240 h of operation with negligible performance degradation. The study introduces a novel strategy combining high-entropy design with nanostructure engineering to develop stable and high-performance cathode materials for SOFCs.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 16\",\"pages\":\"6421–6428 6421–6428\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06461\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06461","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物燃料电池(SOFCs)是一种很有前途的清洁能源技术,它能在对环境影响最小的情况下实现高效的化学能到电能的转换。然而,开发既能保持高性能又能保持长期稳定性的阴极材料仍然具有挑战性,特别是由于颗粒粗化导致纳米结构阴极的降解。本研究采用浸渍法在多孔Ce0.9Gd0.1O1.95 (GDC)骨架上制备了不同负载的高熵尖晶石氧化物(Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)Fe2O4 (MFCNCF)纳米颗粒。当MFCNCF负载为30 wt %时,阴极的极化电阻为0.12 Ω·cm2,在800℃时的最大功率密度为1063.94 mW·cm-2。最重要的是,熵稳定效应使高熵尖晶石氧化物纳米颗粒在240小时的运行中保持其微观结构,而性能下降可以忽略不计。本研究提出了一种将高熵设计与纳米结构工程相结合的新策略来开发稳定、高性能的sofc正极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Entropy Spinel Oxide Nanostructures as Stable Cathodes for Solid Oxide Fuel Cells

High-Entropy Spinel Oxide Nanostructures as Stable Cathodes for Solid Oxide Fuel Cells

Solid oxide fuel cells (SOFCs) represent a promising clean energy technology for efficient chemical-to-electrical energy conversion with minimal environmental impact. However, the development of cathode materials that can maintain both high performance and long-term stability remains challenging, particularly due to the degradation of nanostructured cathodes caused by particle coarsening. This study employs an impregnation method to fabricate high-entropy spinel oxide (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)Fe2O4 (MFCNCF) nanoparticles with varying loadings on a porous Ce0.9Gd0.1O1.95 (GDC) skeleton. The optimized cathode with 30 wt % MFCNCF loading achieves a remarkably low polarization resistance of 0.12 Ω·cm2 and maximum power density of 1063.94 mW·cm–2 at 800 °C. Most significantly, the entropy stabilization effect enables the high-entropy spinel oxide nanoparticles to maintain their microstructure throughout 240 h of operation with negligible performance degradation. The study introduces a novel strategy combining high-entropy design with nanostructure engineering to develop stable and high-performance cathode materials for SOFCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信