双金属硒化物的协同表面重建和界面工程:推进可再生能源存储和析氧

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohd Afshan, Subhabrata Das, Daya Rani, Soumyadip Sharangi, Harini E. M, Mansi Pahuja, Shumile Ahmed Siddiqui, Seema Rani, Nikita Chaudhary,  Jyoti and Kaushik Ghosh*, 
{"title":"双金属硒化物的协同表面重建和界面工程:推进可再生能源存储和析氧","authors":"Mohd Afshan,&nbsp;Subhabrata Das,&nbsp;Daya Rani,&nbsp;Soumyadip Sharangi,&nbsp;Harini E. M,&nbsp;Mansi Pahuja,&nbsp;Shumile Ahmed Siddiqui,&nbsp;Seema Rani,&nbsp;Nikita Chaudhary,&nbsp; Jyoti and Kaushik Ghosh*,&nbsp;","doi":"10.1021/acsami.4c2264810.1021/acsami.4c22648","DOIUrl":null,"url":null,"abstract":"<p >Designing a bimetallic selenide-based heterostructure that possesses high catalytic efficiency, high capacity, and rate capability remains challenging due to constraints imposed by slow reaction kinetics, inadequate electrode utilization, and significant volume deformation. In this study, we successfully engineer a heterostructure comprising carbon nanotubes intertwined with sea urchin-like Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub> nanostructures having high electronic conductivity, high specific capacity, sufficiently exposed active sites, and favorable charge carrier migration. The interface engineering of the multilevel Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub> nanostructure on the carbon nanotube (CNT) framework synergistically reduces energetic barriers and accelerates oxygen evolution kinetics as well as promotes faster Faradaic reactions to enhance charge storage. As a consequence, the as-designed flexible supercapacitor device (Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub>-CNT/CTs//AC-CNT/CTs) attains a peak energy density of 75.93 Wh kg<sup>–1</sup> and a maximum power density of 15.12 kW kg<sup>–1</sup>, demonstrating remarkable durability (94.35% capacitance retention) after 40k cycles. The higher density of states near the Fermi level in the Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub> hybrid enhances electronic conductivity and charge carrier mobility, coupled with efficient OH<sup>–</sup> adsorption (Δ<i>E</i><sub>a</sub> = −4.352 eV@Bi site, Δ<i>E</i><sub>a</sub> = −4.932 eV@Ni site), thereby trapping more electrolyte ions and promoting faster redox reactions. Additionally, the induced electronic interactions between core selenides and surface-generated thin layers of hydroxide/oxide synergistically accelerate the reaction kinetics in terms of a lower overpotential (199 mV@20 mA cm<sup>–2</sup>), a lower Tafel slope (59.2 mV dec<sup>–1</sup>), and a higher electrochemical surface area (1460.0 cm<sup>2</sup>) toward oxygen evolution. The proposed study on the construction of dual redox-active site heterostructures is expected to create avenues for advancing renewable energy systems.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 16","pages":"23892–23910 23892–23910"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Surface Reconstruction and Interface Engineering in Bimetallic Selenides: Advancing Renewable Energy Storage and Oxygen Evolution\",\"authors\":\"Mohd Afshan,&nbsp;Subhabrata Das,&nbsp;Daya Rani,&nbsp;Soumyadip Sharangi,&nbsp;Harini E. M,&nbsp;Mansi Pahuja,&nbsp;Shumile Ahmed Siddiqui,&nbsp;Seema Rani,&nbsp;Nikita Chaudhary,&nbsp; Jyoti and Kaushik Ghosh*,&nbsp;\",\"doi\":\"10.1021/acsami.4c2264810.1021/acsami.4c22648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Designing a bimetallic selenide-based heterostructure that possesses high catalytic efficiency, high capacity, and rate capability remains challenging due to constraints imposed by slow reaction kinetics, inadequate electrode utilization, and significant volume deformation. In this study, we successfully engineer a heterostructure comprising carbon nanotubes intertwined with sea urchin-like Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub> nanostructures having high electronic conductivity, high specific capacity, sufficiently exposed active sites, and favorable charge carrier migration. The interface engineering of the multilevel Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub> nanostructure on the carbon nanotube (CNT) framework synergistically reduces energetic barriers and accelerates oxygen evolution kinetics as well as promotes faster Faradaic reactions to enhance charge storage. As a consequence, the as-designed flexible supercapacitor device (Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub>-CNT/CTs//AC-CNT/CTs) attains a peak energy density of 75.93 Wh kg<sup>–1</sup> and a maximum power density of 15.12 kW kg<sup>–1</sup>, demonstrating remarkable durability (94.35% capacitance retention) after 40k cycles. The higher density of states near the Fermi level in the Bi<sub>2</sub>Se<sub>3</sub>@NiSe<sub>2</sub> hybrid enhances electronic conductivity and charge carrier mobility, coupled with efficient OH<sup>–</sup> adsorption (Δ<i>E</i><sub>a</sub> = −4.352 eV@Bi site, Δ<i>E</i><sub>a</sub> = −4.932 eV@Ni site), thereby trapping more electrolyte ions and promoting faster redox reactions. Additionally, the induced electronic interactions between core selenides and surface-generated thin layers of hydroxide/oxide synergistically accelerate the reaction kinetics in terms of a lower overpotential (199 mV@20 mA cm<sup>–2</sup>), a lower Tafel slope (59.2 mV dec<sup>–1</sup>), and a higher electrochemical surface area (1460.0 cm<sup>2</sup>) toward oxygen evolution. The proposed study on the construction of dual redox-active site heterostructures is expected to create avenues for advancing renewable energy systems.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 16\",\"pages\":\"23892–23910 23892–23910\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c22648\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c22648","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计一种具有高催化效率、高容量和高速率的双金属硒基异质结构仍然具有挑战性,这是由于反应动力学缓慢、电极利用率不足和显著的体积变形所限制的。在这项研究中,我们成功地设计了一种异质结构,包括碳纳米管与海胆样Bi2Se3@NiSe2纳米结构交织在一起,具有高电子导电性、高比容量、充分暴露的活性位点和有利的载流子迁移。碳纳米管(CNT)框架上多层Bi2Se3@NiSe2纳米结构的界面工程协同减少了能垒,加速了析氧动力学,促进了更快的法拉第反应,增强了电荷存储。因此,设计的柔性超级电容器器件(Bi2Se3@NiSe2-CNT/CTs//AC-CNT/CTs)的峰值能量密度为75.93 Wh kg-1,最大功率密度为15.12 kW kg-1,在40k循环后表现出卓越的耐用性(94.35%电容保留率)。在Bi2Se3@NiSe2杂化物中,较高的费米能级附近态密度增强了电子导电性和载流子迁移率,加上高效的OH -吸附(ΔEa =−4.352 eV@Bi位点,ΔEa =−4.932 eV@Ni位点),从而捕获更多的电解质离子,促进更快的氧化还原反应。此外,核心硒化物与表面生成的氢氧化物/氧化物薄层之间的诱导电子相互作用协同加速了反应动力学,从而降低了过电位(199 mV@20 mA cm-2),降低了Tafel斜率(59.2 mV dec1),提高了析氧的电化学表面积(1460.0 cm2)。提出的双氧化还原活性位点异质结构的构建研究有望为推进可再生能源系统创造途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Surface Reconstruction and Interface Engineering in Bimetallic Selenides: Advancing Renewable Energy Storage and Oxygen Evolution

Synergistic Surface Reconstruction and Interface Engineering in Bimetallic Selenides: Advancing Renewable Energy Storage and Oxygen Evolution

Designing a bimetallic selenide-based heterostructure that possesses high catalytic efficiency, high capacity, and rate capability remains challenging due to constraints imposed by slow reaction kinetics, inadequate electrode utilization, and significant volume deformation. In this study, we successfully engineer a heterostructure comprising carbon nanotubes intertwined with sea urchin-like Bi2Se3@NiSe2 nanostructures having high electronic conductivity, high specific capacity, sufficiently exposed active sites, and favorable charge carrier migration. The interface engineering of the multilevel Bi2Se3@NiSe2 nanostructure on the carbon nanotube (CNT) framework synergistically reduces energetic barriers and accelerates oxygen evolution kinetics as well as promotes faster Faradaic reactions to enhance charge storage. As a consequence, the as-designed flexible supercapacitor device (Bi2Se3@NiSe2-CNT/CTs//AC-CNT/CTs) attains a peak energy density of 75.93 Wh kg–1 and a maximum power density of 15.12 kW kg–1, demonstrating remarkable durability (94.35% capacitance retention) after 40k cycles. The higher density of states near the Fermi level in the Bi2Se3@NiSe2 hybrid enhances electronic conductivity and charge carrier mobility, coupled with efficient OH adsorption (ΔEa = −4.352 eV@Bi site, ΔEa = −4.932 eV@Ni site), thereby trapping more electrolyte ions and promoting faster redox reactions. Additionally, the induced electronic interactions between core selenides and surface-generated thin layers of hydroxide/oxide synergistically accelerate the reaction kinetics in terms of a lower overpotential (199 mV@20 mA cm–2), a lower Tafel slope (59.2 mV dec–1), and a higher electrochemical surface area (1460.0 cm2) toward oxygen evolution. The proposed study on the construction of dual redox-active site heterostructures is expected to create avenues for advancing renewable energy systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信