{"title":"检测癌症生物标志物的微弱电磁辐射","authors":"Marcos Dantus, ","doi":"10.1021/acscentsci.5c0055610.1021/acscentsci.5c00556","DOIUrl":null,"url":null,"abstract":"<p >Zigman and colleagues use electric-field molecular fingerprinting and machine learning on blood plasma to detect and differentiate major cancers with high precision.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 4","pages":"505–507 505–507"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.5c00556","citationCount":"0","resultStr":"{\"title\":\"Detecting the Feeble Electromagnetic Emissions from Cancer Biomarkers\",\"authors\":\"Marcos Dantus, \",\"doi\":\"10.1021/acscentsci.5c0055610.1021/acscentsci.5c00556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zigman and colleagues use electric-field molecular fingerprinting and machine learning on blood plasma to detect and differentiate major cancers with high precision.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 4\",\"pages\":\"505–507 505–507\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.5c00556\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.5c00556\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00556","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Detecting the Feeble Electromagnetic Emissions from Cancer Biomarkers
Zigman and colleagues use electric-field molecular fingerprinting and machine learning on blood plasma to detect and differentiate major cancers with high precision.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.