{"title":"金属有机框架和生物质:设计木质素衍生物质催化转化的环境友好型催化剂的合作伙伴","authors":"Changyong Li, Mengqing Zhou*, Yun Zheng, Shengchun Hu*, Liangliang Zhang*, Changzhou Chen* and Jianchun Jiang, ","doi":"10.1021/acs.iecr.5c0020110.1021/acs.iecr.5c00201","DOIUrl":null,"url":null,"abstract":"<p >In this study, a series of puffball carbon-supported catalysts were synthesized to facilitate the hydrodeoxygenation (HDO) of the lignin model compound vanillin (VAN) into 2-methoxy-4-methylphenol (MMP). The Co-ZIF/BC catalyst, prepared by loading ZIF-67 onto puffball carbon support, achieved a VAN conversion rate of 96.28% and a selectivity of 86.57% for MMP under reaction conditions of 240 °C and 1.5 MPa of H<sub>2</sub> for 4 h. Based on the characterization results, it was found that the Co-ZIF/BC catalyst exhibited high crystal defects, a large specific surface area, and mesopore volume, as well as strong Lewis acid sites. Additionally, the Co–N bonds formed between Co nanoparticles and nitrogen increased the electron density on the catalyst surface. The abundant surface Co<sup>0</sup> species enhanced hydrogen adsorption and dissociation, providing more active sites, which facilitated the activation of reactants and improved the efficiency of the catalytic reaction. The use of abundant and low-cost puffball materials in the preparation of the Co-ZIF/BC catalyst not only reduced production costs but also supported the sustainability of the catalytic process, aligning with the principles of green chemistry.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 16","pages":"8156–8169 8156–8169"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal–Organic Frameworks and Biomass: Mutual Partners on Designing Environmentally Friendly Catalysts for Catalytic Conversion of Lignin-Derived Substances\",\"authors\":\"Changyong Li, Mengqing Zhou*, Yun Zheng, Shengchun Hu*, Liangliang Zhang*, Changzhou Chen* and Jianchun Jiang, \",\"doi\":\"10.1021/acs.iecr.5c0020110.1021/acs.iecr.5c00201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, a series of puffball carbon-supported catalysts were synthesized to facilitate the hydrodeoxygenation (HDO) of the lignin model compound vanillin (VAN) into 2-methoxy-4-methylphenol (MMP). The Co-ZIF/BC catalyst, prepared by loading ZIF-67 onto puffball carbon support, achieved a VAN conversion rate of 96.28% and a selectivity of 86.57% for MMP under reaction conditions of 240 °C and 1.5 MPa of H<sub>2</sub> for 4 h. Based on the characterization results, it was found that the Co-ZIF/BC catalyst exhibited high crystal defects, a large specific surface area, and mesopore volume, as well as strong Lewis acid sites. Additionally, the Co–N bonds formed between Co nanoparticles and nitrogen increased the electron density on the catalyst surface. The abundant surface Co<sup>0</sup> species enhanced hydrogen adsorption and dissociation, providing more active sites, which facilitated the activation of reactants and improved the efficiency of the catalytic reaction. The use of abundant and low-cost puffball materials in the preparation of the Co-ZIF/BC catalyst not only reduced production costs but also supported the sustainability of the catalytic process, aligning with the principles of green chemistry.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 16\",\"pages\":\"8156–8169 8156–8169\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00201\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00201","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Metal–Organic Frameworks and Biomass: Mutual Partners on Designing Environmentally Friendly Catalysts for Catalytic Conversion of Lignin-Derived Substances
In this study, a series of puffball carbon-supported catalysts were synthesized to facilitate the hydrodeoxygenation (HDO) of the lignin model compound vanillin (VAN) into 2-methoxy-4-methylphenol (MMP). The Co-ZIF/BC catalyst, prepared by loading ZIF-67 onto puffball carbon support, achieved a VAN conversion rate of 96.28% and a selectivity of 86.57% for MMP under reaction conditions of 240 °C and 1.5 MPa of H2 for 4 h. Based on the characterization results, it was found that the Co-ZIF/BC catalyst exhibited high crystal defects, a large specific surface area, and mesopore volume, as well as strong Lewis acid sites. Additionally, the Co–N bonds formed between Co nanoparticles and nitrogen increased the electron density on the catalyst surface. The abundant surface Co0 species enhanced hydrogen adsorption and dissociation, providing more active sites, which facilitated the activation of reactants and improved the efficiency of the catalytic reaction. The use of abundant and low-cost puffball materials in the preparation of the Co-ZIF/BC catalyst not only reduced production costs but also supported the sustainability of the catalytic process, aligning with the principles of green chemistry.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.