Daniel Hodonj, Koki Umemoto, Masato Terasawa, Zexin Yu, Uwe Wagner, Toshihiro Mori, Hiromasa Nishioka, Takao Mishima, Olaf Deutschmann, Thomas Koch, Jin Kusaka and Patrick Lott*,
{"title":"三向催化剂的周期性运行:从合成气体台架测试到真实世界的发动机性能","authors":"Daniel Hodonj, Koki Umemoto, Masato Terasawa, Zexin Yu, Uwe Wagner, Toshihiro Mori, Hiromasa Nishioka, Takao Mishima, Olaf Deutschmann, Thomas Koch, Jin Kusaka and Patrick Lott*, ","doi":"10.1021/acs.iecr.5c0013210.1021/acs.iecr.5c00132","DOIUrl":null,"url":null,"abstract":"<p >This study utilized a synthetic gas test bench (SGB) and two engine test benches (ETBs) to evaluate the periodic operation of an industrially relevant three-way catalyst formulation. The goal was to bridge the gap between laboratory-scale testing and real-world applications, ensuring the reliability of catalysts in engine environments under periodic conditions. SGB testing showed significant increases in NO, CO, and hydrocarbon conversion and N<sub>2</sub> selectivity under dynamic operation compared to stoichiometric steady-state conditions. Despite differences in ETB testing due to the realistic conditions, notable improvements in pollutant conversion were achieved. Challenges included inaccurate control of the mean air–fuel equivalence ratio (AFR) by the engine control unit and the AFR sensor. The findings underscore the importance of harmonizing engine operation with formulation-governed catalyst properties to minimize tailpipe emissions. Periodic operation emerges as a promising technique for enhancing catalyst efficiency in varying engine conditions.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 16","pages":"8143–8155 8143–8155"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.5c00132","citationCount":"0","resultStr":"{\"title\":\"Periodic Operation of Three-Way Catalysts: From Synthetic Gas Bench Testing to Real-World Engine Performance\",\"authors\":\"Daniel Hodonj, Koki Umemoto, Masato Terasawa, Zexin Yu, Uwe Wagner, Toshihiro Mori, Hiromasa Nishioka, Takao Mishima, Olaf Deutschmann, Thomas Koch, Jin Kusaka and Patrick Lott*, \",\"doi\":\"10.1021/acs.iecr.5c0013210.1021/acs.iecr.5c00132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study utilized a synthetic gas test bench (SGB) and two engine test benches (ETBs) to evaluate the periodic operation of an industrially relevant three-way catalyst formulation. The goal was to bridge the gap between laboratory-scale testing and real-world applications, ensuring the reliability of catalysts in engine environments under periodic conditions. SGB testing showed significant increases in NO, CO, and hydrocarbon conversion and N<sub>2</sub> selectivity under dynamic operation compared to stoichiometric steady-state conditions. Despite differences in ETB testing due to the realistic conditions, notable improvements in pollutant conversion were achieved. Challenges included inaccurate control of the mean air–fuel equivalence ratio (AFR) by the engine control unit and the AFR sensor. The findings underscore the importance of harmonizing engine operation with formulation-governed catalyst properties to minimize tailpipe emissions. Periodic operation emerges as a promising technique for enhancing catalyst efficiency in varying engine conditions.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 16\",\"pages\":\"8143–8155 8143–8155\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.iecr.5c00132\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00132\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00132","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Periodic Operation of Three-Way Catalysts: From Synthetic Gas Bench Testing to Real-World Engine Performance
This study utilized a synthetic gas test bench (SGB) and two engine test benches (ETBs) to evaluate the periodic operation of an industrially relevant three-way catalyst formulation. The goal was to bridge the gap between laboratory-scale testing and real-world applications, ensuring the reliability of catalysts in engine environments under periodic conditions. SGB testing showed significant increases in NO, CO, and hydrocarbon conversion and N2 selectivity under dynamic operation compared to stoichiometric steady-state conditions. Despite differences in ETB testing due to the realistic conditions, notable improvements in pollutant conversion were achieved. Challenges included inaccurate control of the mean air–fuel equivalence ratio (AFR) by the engine control unit and the AFR sensor. The findings underscore the importance of harmonizing engine operation with formulation-governed catalyst properties to minimize tailpipe emissions. Periodic operation emerges as a promising technique for enhancing catalyst efficiency in varying engine conditions.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.