可恢复电阻的纳米流控忆阻器和神经形态芯片

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ke Liu, Yongchang Wang, Miao Sun, Jiajia Lu, Deli Shi and Yanbo Xie*, 
{"title":"可恢复电阻的纳米流控忆阻器和神经形态芯片","authors":"Ke Liu,&nbsp;Yongchang Wang,&nbsp;Miao Sun,&nbsp;Jiajia Lu,&nbsp;Deli Shi and Yanbo Xie*,&nbsp;","doi":"10.1021/acs.nanolett.5c0031510.1021/acs.nanolett.5c00315","DOIUrl":null,"url":null,"abstract":"<p >Resistance drift due to residual ions limits the accuracy of memristor-based neuromorphic computing. Here, we demonstrate nanofluidic memristors based on voltage-driven ion filling within Ångström channels, immersed in asymmetrically concentrated electrolyte solutions. Inspired by the brain’s waste clearance, we restore conductance after 20,000 cycles by removing trapped ions, paving the way for endurance enhancement. The devices exhibit hour-long retention and ultralow energy consumption (∼0.2 fJ per spike per channel). By tuning the voltage, frequency, and pH, we emulate short-term synaptic plasticity. Finally, we demonstrated the first 4 × 4 nanofluidic memristor array capable of recognizing mathematical operators. Our work demonstrated that fluidic memristors are promising for energy-efficient, long-retention, and endurance neuromorphic chips.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 16","pages":"6530–6538 6530–6538"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistance-Restorable Nanofluidic Memristor and Neuromorphic Chip\",\"authors\":\"Ke Liu,&nbsp;Yongchang Wang,&nbsp;Miao Sun,&nbsp;Jiajia Lu,&nbsp;Deli Shi and Yanbo Xie*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0031510.1021/acs.nanolett.5c00315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Resistance drift due to residual ions limits the accuracy of memristor-based neuromorphic computing. Here, we demonstrate nanofluidic memristors based on voltage-driven ion filling within Ångström channels, immersed in asymmetrically concentrated electrolyte solutions. Inspired by the brain’s waste clearance, we restore conductance after 20,000 cycles by removing trapped ions, paving the way for endurance enhancement. The devices exhibit hour-long retention and ultralow energy consumption (∼0.2 fJ per spike per channel). By tuning the voltage, frequency, and pH, we emulate short-term synaptic plasticity. Finally, we demonstrated the first 4 × 4 nanofluidic memristor array capable of recognizing mathematical operators. Our work demonstrated that fluidic memristors are promising for energy-efficient, long-retention, and endurance neuromorphic chips.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 16\",\"pages\":\"6530–6538 6530–6538\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00315\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00315","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

残留离子引起的电阻漂移限制了基于记忆电阻器的神经形态计算的准确性。在这里,我们展示了基于电压驱动离子填充Ångström通道的纳米流体忆阻器,浸入不对称浓缩的电解质溶液中。受大脑废物清除的启发,我们通过去除捕获的离子,在20,000次循环后恢复电导,为增强耐力铺平了道路。该器件具有一小时的保持时间和超低能量消耗(每个通道每个尖峰约0.2 fJ)。通过调节电压、频率和pH值,我们模拟了短期突触的可塑性。最后,我们展示了第一个能够识别数学运算符的4 × 4纳米流体忆阻器阵列。我们的工作表明,流体忆阻器有望成为节能、长保留和持久的神经形态芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Resistance-Restorable Nanofluidic Memristor and Neuromorphic Chip

Resistance-Restorable Nanofluidic Memristor and Neuromorphic Chip

Resistance drift due to residual ions limits the accuracy of memristor-based neuromorphic computing. Here, we demonstrate nanofluidic memristors based on voltage-driven ion filling within Ångström channels, immersed in asymmetrically concentrated electrolyte solutions. Inspired by the brain’s waste clearance, we restore conductance after 20,000 cycles by removing trapped ions, paving the way for endurance enhancement. The devices exhibit hour-long retention and ultralow energy consumption (∼0.2 fJ per spike per channel). By tuning the voltage, frequency, and pH, we emulate short-term synaptic plasticity. Finally, we demonstrated the first 4 × 4 nanofluidic memristor array capable of recognizing mathematical operators. Our work demonstrated that fluidic memristors are promising for energy-efficient, long-retention, and endurance neuromorphic chips.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信