Nan Wang, Mingjian Zhu, Yiming Jiang, Daoming Zhang, Jiachen Lin, Jiahe Wu*, Nengming Lin* and Jianqing Gao*,
{"title":"用于精确肿瘤清除和转移级联干扰的中性粒细胞介导的肿瘤识别仿生纳米装置","authors":"Nan Wang, Mingjian Zhu, Yiming Jiang, Daoming Zhang, Jiachen Lin, Jiahe Wu*, Nengming Lin* and Jianqing Gao*, ","doi":"10.1021/acsami.5c0186610.1021/acsami.5c01866","DOIUrl":null,"url":null,"abstract":"<p >The deficient discrimination of tumor cells, limited accumulation of therapeutic agents in tumor foci, and undesirable tumor metastasis result in compromised therapeutic efficacy in antitumor therapy. Neutrophils, the most abundant circulating leukocytes, are key players in tumor progression and have a high affinity to tumors. Herein, a biomimetic tumor discrimination nanodevice (NL-FSB) is developed by harboring a pH-sensitive Fenton agent (FSB) in an activated neutrophil membrane-incorporated liposome for tumor-specific ablation. Inheriting the biointerfacing properties of neutrophils, NL-FSB is endowed with high affinity to tumors. On one hand, NL-FSB can be recruited to acidic tumor sites mediated by chemotaxis attraction and selectively generate reactive oxygen species via amplified Fenton chemical reaction for specific tumor eradication. On the other hand, the biomimetic NL-FSB can also target and bind tumor vascular endothelium or circulating tumor cells (CTCs) in circulation, executing pseudo escort to perturb CTC-neutrophil cluster formation and tumor metastasis cascade. Unprecedentedly, the neutrophil-mediated nanoagent can effectively inhibit the already-formed tumor and prevent tumor metastasis with high specificity. Our study represents a promising yet simple strategy for tumor-specific killing and metastasis cascade blockage via a nanobioengineering functionalization strategy.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 16","pages":"23680–23690 23680–23690"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrophil-Mediated Tumor Discrimination Biomimetic Nanodevice for Precise Tumor Eradication and Metastasis Cascade Perturbing\",\"authors\":\"Nan Wang, Mingjian Zhu, Yiming Jiang, Daoming Zhang, Jiachen Lin, Jiahe Wu*, Nengming Lin* and Jianqing Gao*, \",\"doi\":\"10.1021/acsami.5c0186610.1021/acsami.5c01866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The deficient discrimination of tumor cells, limited accumulation of therapeutic agents in tumor foci, and undesirable tumor metastasis result in compromised therapeutic efficacy in antitumor therapy. Neutrophils, the most abundant circulating leukocytes, are key players in tumor progression and have a high affinity to tumors. Herein, a biomimetic tumor discrimination nanodevice (NL-FSB) is developed by harboring a pH-sensitive Fenton agent (FSB) in an activated neutrophil membrane-incorporated liposome for tumor-specific ablation. Inheriting the biointerfacing properties of neutrophils, NL-FSB is endowed with high affinity to tumors. On one hand, NL-FSB can be recruited to acidic tumor sites mediated by chemotaxis attraction and selectively generate reactive oxygen species via amplified Fenton chemical reaction for specific tumor eradication. On the other hand, the biomimetic NL-FSB can also target and bind tumor vascular endothelium or circulating tumor cells (CTCs) in circulation, executing pseudo escort to perturb CTC-neutrophil cluster formation and tumor metastasis cascade. Unprecedentedly, the neutrophil-mediated nanoagent can effectively inhibit the already-formed tumor and prevent tumor metastasis with high specificity. Our study represents a promising yet simple strategy for tumor-specific killing and metastasis cascade blockage via a nanobioengineering functionalization strategy.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 16\",\"pages\":\"23680–23690 23680–23690\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01866\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01866","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Neutrophil-Mediated Tumor Discrimination Biomimetic Nanodevice for Precise Tumor Eradication and Metastasis Cascade Perturbing
The deficient discrimination of tumor cells, limited accumulation of therapeutic agents in tumor foci, and undesirable tumor metastasis result in compromised therapeutic efficacy in antitumor therapy. Neutrophils, the most abundant circulating leukocytes, are key players in tumor progression and have a high affinity to tumors. Herein, a biomimetic tumor discrimination nanodevice (NL-FSB) is developed by harboring a pH-sensitive Fenton agent (FSB) in an activated neutrophil membrane-incorporated liposome for tumor-specific ablation. Inheriting the biointerfacing properties of neutrophils, NL-FSB is endowed with high affinity to tumors. On one hand, NL-FSB can be recruited to acidic tumor sites mediated by chemotaxis attraction and selectively generate reactive oxygen species via amplified Fenton chemical reaction for specific tumor eradication. On the other hand, the biomimetic NL-FSB can also target and bind tumor vascular endothelium or circulating tumor cells (CTCs) in circulation, executing pseudo escort to perturb CTC-neutrophil cluster formation and tumor metastasis cascade. Unprecedentedly, the neutrophil-mediated nanoagent can effectively inhibit the already-formed tumor and prevent tumor metastasis with high specificity. Our study represents a promising yet simple strategy for tumor-specific killing and metastasis cascade blockage via a nanobioengineering functionalization strategy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.