ccloh修饰二氧化硅纳米颗粒用于mRNA传递

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
He Xian, Yaping Song, Jingjing Qu, Yiru Shi, Yue Zhang, Weixi Wu, Minjun Kim, Yue Wang* and Chengzhong Yu*, 
{"title":"ccloh修饰二氧化硅纳米颗粒用于mRNA传递","authors":"He Xian,&nbsp;Yaping Song,&nbsp;Jingjing Qu,&nbsp;Yiru Shi,&nbsp;Yue Zhang,&nbsp;Weixi Wu,&nbsp;Minjun Kim,&nbsp;Yue Wang* and Chengzhong Yu*,&nbsp;","doi":"10.1021/acs.nanolett.4c0561510.1021/acs.nanolett.4c05615","DOIUrl":null,"url":null,"abstract":"<p >Messenger RNA (mRNA) technology has attracted wide attention in biomedical applications; its success relies heavily on the development of effective delivery tools. Herein, we report the synthesis of a novel CaClOH-modified silica nanoparticle (SNP-CaClOH) with a spiky surface for mRNA delivery. SNP-CaClOH is obtained by a rationally designed thermal decomposition process of hydrated CaCl<sub>2</sub> inside the silanol-rich mesopores of preformed spiky SNPs. When used as a carrier for the cellular delivery of mRNA, the unique composition of CaClOH offers alkalinity to SNP-CaClOH that promotes endosomal escape via the proton sponge effect. Moreover, SNP-CaClOH leads to an increased intracellular Ca<sup>2+</sup> level to activate the mammalian target of rapamycin complex 1 (mTORC1) by interacting with calmodulin (CaM) for enhanced mRNA translation. Taking further advantage of the spiky nanotopography, the superior mRNA delivery performance of SNP-CaClOH is demonstrated both <i>in vitro</i> and <i>in vivo</i>, providing useful delivery tools for mRNA technology development.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 16","pages":"6365–6373 6365–6373"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CaClOH-Modified Silica Nanoparticles for mRNA Delivery\",\"authors\":\"He Xian,&nbsp;Yaping Song,&nbsp;Jingjing Qu,&nbsp;Yiru Shi,&nbsp;Yue Zhang,&nbsp;Weixi Wu,&nbsp;Minjun Kim,&nbsp;Yue Wang* and Chengzhong Yu*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0561510.1021/acs.nanolett.4c05615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Messenger RNA (mRNA) technology has attracted wide attention in biomedical applications; its success relies heavily on the development of effective delivery tools. Herein, we report the synthesis of a novel CaClOH-modified silica nanoparticle (SNP-CaClOH) with a spiky surface for mRNA delivery. SNP-CaClOH is obtained by a rationally designed thermal decomposition process of hydrated CaCl<sub>2</sub> inside the silanol-rich mesopores of preformed spiky SNPs. When used as a carrier for the cellular delivery of mRNA, the unique composition of CaClOH offers alkalinity to SNP-CaClOH that promotes endosomal escape via the proton sponge effect. Moreover, SNP-CaClOH leads to an increased intracellular Ca<sup>2+</sup> level to activate the mammalian target of rapamycin complex 1 (mTORC1) by interacting with calmodulin (CaM) for enhanced mRNA translation. Taking further advantage of the spiky nanotopography, the superior mRNA delivery performance of SNP-CaClOH is demonstrated both <i>in vitro</i> and <i>in vivo</i>, providing useful delivery tools for mRNA technology development.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 16\",\"pages\":\"6365–6373 6365–6373\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05615\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05615","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

信使RNA (mRNA)技术在生物医学领域的应用受到了广泛的关注。它的成功在很大程度上依赖于开发有效的交付工具。在此,我们报道了一种新型的cacloh修饰二氧化硅纳米颗粒(SNP-CaClOH)的合成,该纳米颗粒具有用于mRNA递送的尖状表面。SNP-CaClOH是通过合理设计的热分解过程,在预制的尖状SNPs的富硅醇介孔内水合CaCl2得到的。当作为mRNA细胞递送的载体时,CaClOH的独特组成为SNP-CaClOH提供碱性,通过质子海绵效应促进内体逃逸。此外,SNP-CaClOH通过与钙调蛋白(CaM)相互作用增强mRNA翻译,导致细胞内Ca2+水平升高,激活哺乳动物雷帕霉素复合物1 (mTORC1)靶点。进一步利用尖状纳米形貌,SNP-CaClOH在体外和体内均具有优越的mRNA传递性能,为mRNA技术的发展提供了有用的传递工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CaClOH-Modified Silica Nanoparticles for mRNA Delivery

CaClOH-Modified Silica Nanoparticles for mRNA Delivery

Messenger RNA (mRNA) technology has attracted wide attention in biomedical applications; its success relies heavily on the development of effective delivery tools. Herein, we report the synthesis of a novel CaClOH-modified silica nanoparticle (SNP-CaClOH) with a spiky surface for mRNA delivery. SNP-CaClOH is obtained by a rationally designed thermal decomposition process of hydrated CaCl2 inside the silanol-rich mesopores of preformed spiky SNPs. When used as a carrier for the cellular delivery of mRNA, the unique composition of CaClOH offers alkalinity to SNP-CaClOH that promotes endosomal escape via the proton sponge effect. Moreover, SNP-CaClOH leads to an increased intracellular Ca2+ level to activate the mammalian target of rapamycin complex 1 (mTORC1) by interacting with calmodulin (CaM) for enhanced mRNA translation. Taking further advantage of the spiky nanotopography, the superior mRNA delivery performance of SNP-CaClOH is demonstrated both in vitro and in vivo, providing useful delivery tools for mRNA technology development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信