非预期MoO3/Al界面反应降低有机太阳能电池热退火性能及抑制方法

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuelai Yu, Qian Xi, Jian Qin, Na Wu, Bowen Liu, Tianyu Liu, Zhiyun Li, Ronald Österbacka, Qun Luo, Chang-Qi Ma
{"title":"非预期MoO3/Al界面反应降低有机太阳能电池热退火性能及抑制方法","authors":"Xuelai Yu, Qian Xi, Jian Qin, Na Wu, Bowen Liu, Tianyu Liu, Zhiyun Li, Ronald Österbacka, Qun Luo, Chang-Qi Ma","doi":"10.1021/acsami.5c05122","DOIUrl":null,"url":null,"abstract":"Understanding the degradation mechanism and improving the thermal stability of organic solar cells are essential for this new photovoltaic technology. In this work, we found that the high-performance polymer solar cells suffer from significant performance decay upon thermal annealing at 150 °C owing to the fast decay of <i>V</i><sub>OC</sub> and FF. We demonstrated that the thermal annealing process leads to a severe chemical reaction of MoO<sub>3</sub> with Al, forming an Al<sub>2</sub>O<sub>3</sub> barrier layer at the MoO<sub>3</sub>/Al interface, which lowers the built-in potential (<i>V</i><sub>bi</sub>) of the cells and consequently reduces charge collection efficiency. Inserting a thin C<sub>60</sub> interlayer between MoO<sub>3</sub>/Al slows the chemical reaction of MoO<sub>3</sub> with Al, which ensures a high <i>V</i><sub>bi</sub> and charge collection efficiency for the annealed MoO<sub>3</sub>/C<sub>60</sub>/Al cells. Such a protection effect of the C<sub>60</sub> layer in improving device performance against thermal annealing was also confirmed for cells with different polymer photoactive layers and metal electrodes, demonstrating the generality of the interfacial degradation of the cells and the protection effect of the C<sub>60</sub> layer. Finally, we demonstrated that the inverted polymer solar cells with the C<sub>60</sub>-modified anode showed almost no performance decay upon high-temperature hot-press encapsulation, demonstrating excellent heat tolerance of this new device structure.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"18 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unexpected MoO3/Al Interfacial Reaction Lowering the Performance of Organic Solar Cells upon Thermal Annealing and Methods for Suppression\",\"authors\":\"Xuelai Yu, Qian Xi, Jian Qin, Na Wu, Bowen Liu, Tianyu Liu, Zhiyun Li, Ronald Österbacka, Qun Luo, Chang-Qi Ma\",\"doi\":\"10.1021/acsami.5c05122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the degradation mechanism and improving the thermal stability of organic solar cells are essential for this new photovoltaic technology. In this work, we found that the high-performance polymer solar cells suffer from significant performance decay upon thermal annealing at 150 °C owing to the fast decay of <i>V</i><sub>OC</sub> and FF. We demonstrated that the thermal annealing process leads to a severe chemical reaction of MoO<sub>3</sub> with Al, forming an Al<sub>2</sub>O<sub>3</sub> barrier layer at the MoO<sub>3</sub>/Al interface, which lowers the built-in potential (<i>V</i><sub>bi</sub>) of the cells and consequently reduces charge collection efficiency. Inserting a thin C<sub>60</sub> interlayer between MoO<sub>3</sub>/Al slows the chemical reaction of MoO<sub>3</sub> with Al, which ensures a high <i>V</i><sub>bi</sub> and charge collection efficiency for the annealed MoO<sub>3</sub>/C<sub>60</sub>/Al cells. Such a protection effect of the C<sub>60</sub> layer in improving device performance against thermal annealing was also confirmed for cells with different polymer photoactive layers and metal electrodes, demonstrating the generality of the interfacial degradation of the cells and the protection effect of the C<sub>60</sub> layer. Finally, we demonstrated that the inverted polymer solar cells with the C<sub>60</sub>-modified anode showed almost no performance decay upon high-temperature hot-press encapsulation, demonstrating excellent heat tolerance of this new device structure.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c05122\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c05122","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解有机太阳能电池的降解机理并提高其热稳定性对这种新型光伏技术至关重要。在这项工作中,我们发现,由于 VOC 和 FF 的快速衰减,高性能聚合物太阳能电池在 150 °C 的热退火过程中会出现明显的性能衰减。我们证明,热退火过程会导致 MoO3 与 Al 发生严重的化学反应,在 MoO3/Al 界面形成 Al2O3 阻挡层,从而降低电池的内置电位 (Vbi),进而降低电荷收集效率。在 MoO3/Al 之间插入一层薄的 C60 中间膜,可减缓 MoO3 与 Al 的化学反应,从而确保退火的 MoO3/C60/Al 电池具有较高的 Vbi 和电荷收集效率。对于具有不同聚合物光活性层和金属电极的电池,我们也证实了 C60 层在提高器件性能以抵御热退火方面的保护作用,这证明了电池界面降解和 C60 层保护作用的普遍性。最后,我们证明了使用 C60 改性阳极的倒置聚合物太阳能电池在高温热压封装后几乎没有性能衰减,这表明这种新型器件结构具有出色的耐热性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unexpected MoO3/Al Interfacial Reaction Lowering the Performance of Organic Solar Cells upon Thermal Annealing and Methods for Suppression

Unexpected MoO3/Al Interfacial Reaction Lowering the Performance of Organic Solar Cells upon Thermal Annealing and Methods for Suppression
Understanding the degradation mechanism and improving the thermal stability of organic solar cells are essential for this new photovoltaic technology. In this work, we found that the high-performance polymer solar cells suffer from significant performance decay upon thermal annealing at 150 °C owing to the fast decay of VOC and FF. We demonstrated that the thermal annealing process leads to a severe chemical reaction of MoO3 with Al, forming an Al2O3 barrier layer at the MoO3/Al interface, which lowers the built-in potential (Vbi) of the cells and consequently reduces charge collection efficiency. Inserting a thin C60 interlayer between MoO3/Al slows the chemical reaction of MoO3 with Al, which ensures a high Vbi and charge collection efficiency for the annealed MoO3/C60/Al cells. Such a protection effect of the C60 layer in improving device performance against thermal annealing was also confirmed for cells with different polymer photoactive layers and metal electrodes, demonstrating the generality of the interfacial degradation of the cells and the protection effect of the C60 layer. Finally, we demonstrated that the inverted polymer solar cells with the C60-modified anode showed almost no performance decay upon high-temperature hot-press encapsulation, demonstrating excellent heat tolerance of this new device structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信