Jian Wang, Haitao Hei, Hongfei Ye, Yonggang Zheng, Hongwu Zhang
{"title":"水在非均质纳米通道中的扩散机制","authors":"Jian Wang, Haitao Hei, Hongfei Ye, Yonggang Zheng, Hongwu Zhang","doi":"10.1021/acs.langmuir.5c00595","DOIUrl":null,"url":null,"abstract":"Heterogeneous confinement systems attract increasing attention owing to their widespread applications in diverse areas. However, it is still lacking an in-depth understanding of the diffusion mechanism and physical properties of water in the heterogeneous nanochannel through molecular simulations. Here, high-precision TIP4P-BGWT water molecules confined in molybdenum disulfide (MoS<sub>2</sub>) and graphene walls are utilized to investigate the influences of variables, i.e., channel height, wettability of walls, charge of MoS<sub>2</sub>, and temperature, on the diffusion mechanism and physical properties. The simulation results indicate that the diffusion mechanism is significantly affected by the channel height and temperature but weakly influenced by the wettability of walls. Observable impacts on the physical properties can be observed with the channel height and temperature, but slight impacts are observed with the wettability of walls. Considered variables, excluding charge of MoS<sub>2</sub>, remarkably influence density distribution, while limiting mean square displacement at the channel height depends solely upon the effective diffusion distance. It is worth noting that, compared to the homostructure, significant discrepancy in the density distribution can be obtained from the heterogeneous nanochannel due to different solid–liquid interactions. The present study offers a solid foundation for the design of nanodevices, such as nanomembrane, nanosensor, microfluidic chip, etc.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"32 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Untangling the Diffusion Mechanism of Water in a Heterogeneous Nanochannel\",\"authors\":\"Jian Wang, Haitao Hei, Hongfei Ye, Yonggang Zheng, Hongwu Zhang\",\"doi\":\"10.1021/acs.langmuir.5c00595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous confinement systems attract increasing attention owing to their widespread applications in diverse areas. However, it is still lacking an in-depth understanding of the diffusion mechanism and physical properties of water in the heterogeneous nanochannel through molecular simulations. Here, high-precision TIP4P-BGWT water molecules confined in molybdenum disulfide (MoS<sub>2</sub>) and graphene walls are utilized to investigate the influences of variables, i.e., channel height, wettability of walls, charge of MoS<sub>2</sub>, and temperature, on the diffusion mechanism and physical properties. The simulation results indicate that the diffusion mechanism is significantly affected by the channel height and temperature but weakly influenced by the wettability of walls. Observable impacts on the physical properties can be observed with the channel height and temperature, but slight impacts are observed with the wettability of walls. Considered variables, excluding charge of MoS<sub>2</sub>, remarkably influence density distribution, while limiting mean square displacement at the channel height depends solely upon the effective diffusion distance. It is worth noting that, compared to the homostructure, significant discrepancy in the density distribution can be obtained from the heterogeneous nanochannel due to different solid–liquid interactions. The present study offers a solid foundation for the design of nanodevices, such as nanomembrane, nanosensor, microfluidic chip, etc.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c00595\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00595","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Untangling the Diffusion Mechanism of Water in a Heterogeneous Nanochannel
Heterogeneous confinement systems attract increasing attention owing to their widespread applications in diverse areas. However, it is still lacking an in-depth understanding of the diffusion mechanism and physical properties of water in the heterogeneous nanochannel through molecular simulations. Here, high-precision TIP4P-BGWT water molecules confined in molybdenum disulfide (MoS2) and graphene walls are utilized to investigate the influences of variables, i.e., channel height, wettability of walls, charge of MoS2, and temperature, on the diffusion mechanism and physical properties. The simulation results indicate that the diffusion mechanism is significantly affected by the channel height and temperature but weakly influenced by the wettability of walls. Observable impacts on the physical properties can be observed with the channel height and temperature, but slight impacts are observed with the wettability of walls. Considered variables, excluding charge of MoS2, remarkably influence density distribution, while limiting mean square displacement at the channel height depends solely upon the effective diffusion distance. It is worth noting that, compared to the homostructure, significant discrepancy in the density distribution can be obtained from the heterogeneous nanochannel due to different solid–liquid interactions. The present study offers a solid foundation for the design of nanodevices, such as nanomembrane, nanosensor, microfluidic chip, etc.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).