用于检测棉织物中弹性纤维的光谱成像及一类分类器

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Analyst Pub Date : 2025-04-22 DOI:10.1039/d5an00107b
Ella Mahlamäki, Inge Schlapp-Hackl, Tharindu Koralage, Michael Hummel, Mikko Mäkelä
{"title":"用于检测棉织物中弹性纤维的光谱成像及一类分类器","authors":"Ella Mahlamäki, Inge Schlapp-Hackl, Tharindu Koralage, Michael Hummel, Mikko Mäkelä","doi":"10.1039/d5an00107b","DOIUrl":null,"url":null,"abstract":"Elastane detection is important for textile recycling as elastane fibers can hamper mechanical and chemical fiber recycling. Here, we report the use of near-infrared imaging spectroscopy and class modelling to detect 2–6% elastane in consumer cotton fabrics to provide alternatives to current detection methods, which are invasive and time-consuming. Our method automatically identified outlier fabrics and measurements with class-specific clustering and showed higher classification accuracies by averaging across individual pixel spectra to reduce sampling uncertainty. The final classification results showed median test set true positive and true negative rates of 89–97% based on randomized resampling. Class modelling offers clear benefits compared to commonly used discriminant classifiers as it allows modelling new classes using only a set of target samples without requiring representative training objects from all the other classes. Overall, these results open the possibility for fast non-invasive detection of small amounts of elastane in cotton, taking us a step closer to a circular economy of textiles.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral imaging and a one-class classifier for detecting elastane in cotton fabrics\",\"authors\":\"Ella Mahlamäki, Inge Schlapp-Hackl, Tharindu Koralage, Michael Hummel, Mikko Mäkelä\",\"doi\":\"10.1039/d5an00107b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elastane detection is important for textile recycling as elastane fibers can hamper mechanical and chemical fiber recycling. Here, we report the use of near-infrared imaging spectroscopy and class modelling to detect 2–6% elastane in consumer cotton fabrics to provide alternatives to current detection methods, which are invasive and time-consuming. Our method automatically identified outlier fabrics and measurements with class-specific clustering and showed higher classification accuracies by averaging across individual pixel spectra to reduce sampling uncertainty. The final classification results showed median test set true positive and true negative rates of 89–97% based on randomized resampling. Class modelling offers clear benefits compared to commonly used discriminant classifiers as it allows modelling new classes using only a set of target samples without requiring representative training objects from all the other classes. Overall, these results open the possibility for fast non-invasive detection of small amounts of elastane in cotton, taking us a step closer to a circular economy of textiles.\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5an00107b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5an00107b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

弹性纤维的检测对纺织品回收具有重要意义,因为弹性纤维会阻碍机械和化学纤维的回收。在这里,我们报告了使用近红外成像光谱和分类建模来检测消费棉织物中2-6%的弹性纤维,以提供替代目前的检测方法,这些方法是侵入性的和耗时的。该方法通过分类聚类自动识别异常织物和测量值,并通过对单个像素光谱进行平均来降低采样不确定性,显示出更高的分类精度。最终分类结果显示,随机重抽样的中位检验集真阳性率和真阴性率为89-97%。与常用的判别分类器相比,类建模提供了明显的好处,因为它允许仅使用一组目标样本来建模新类,而不需要来自所有其他类的代表性训练对象。总的来说,这些结果为快速无创检测棉花中的少量弹性纤维提供了可能,使我们离纺织品的循环经济又近了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spectral imaging and a one-class classifier for detecting elastane in cotton fabrics

Spectral imaging and a one-class classifier for detecting elastane in cotton fabrics
Elastane detection is important for textile recycling as elastane fibers can hamper mechanical and chemical fiber recycling. Here, we report the use of near-infrared imaging spectroscopy and class modelling to detect 2–6% elastane in consumer cotton fabrics to provide alternatives to current detection methods, which are invasive and time-consuming. Our method automatically identified outlier fabrics and measurements with class-specific clustering and showed higher classification accuracies by averaging across individual pixel spectra to reduce sampling uncertainty. The final classification results showed median test set true positive and true negative rates of 89–97% based on randomized resampling. Class modelling offers clear benefits compared to commonly used discriminant classifiers as it allows modelling new classes using only a set of target samples without requiring representative training objects from all the other classes. Overall, these results open the possibility for fast non-invasive detection of small amounts of elastane in cotton, taking us a step closer to a circular economy of textiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信