{"title":"以机器学习为指导,对用于硼回收的正渗透聚合物膜进行性能预测","authors":"Meng Wang , Zhanlin Ji , Yingchao Dong","doi":"10.1016/j.watres.2025.123700","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient recovery of boron is one of the crucial strategies of sustainably extracting valuable resource from water. It however still remains a key technological challenge to efficiently predict boron recovery from unconventional water resources such as underground water, geothermal water and seawater, which are still few concerned in open literature. To effectively address this issue, herein we propose an efficient strategy to precisely predict boron recovery performance and then explore mechanism in forward osmosis process via advanced machine learning techniques with better model performance. Specifically, to explore the complex relationships among various boron recovery factors, we compare different advanced machine learning regression models to provide valuable insights into how these key factors impact system performance. We find that three key driving factors (i.e., pH, boron concentration, and membrane orientation) significantly affect boron recovery performance in the forward osmosis process. The best prediction accuracy with a high r-square (R<sup>2</sup>, 95.4 %) is achieved via the XGBoost model combined with the particle swarm optimization algorithm, demonstrating its remarkable ability for precise boron recovery prediction. By employing this hybrid model to optimize the search space, the overall performance of forward osmosis system was significantly enhanced, with a predicted boron rejection rate as high as 98.28 %, outperforming the reported values. Our work demonstrates the powerful potential of advanced machine learning for efficiently predicting boron recovery for water quality improvement and resource recovery applications.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123700"},"PeriodicalIF":11.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-guided performance prediction of forward osmosis polymeric membranes for boron recovery\",\"authors\":\"Meng Wang , Zhanlin Ji , Yingchao Dong\",\"doi\":\"10.1016/j.watres.2025.123700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient recovery of boron is one of the crucial strategies of sustainably extracting valuable resource from water. It however still remains a key technological challenge to efficiently predict boron recovery from unconventional water resources such as underground water, geothermal water and seawater, which are still few concerned in open literature. To effectively address this issue, herein we propose an efficient strategy to precisely predict boron recovery performance and then explore mechanism in forward osmosis process via advanced machine learning techniques with better model performance. Specifically, to explore the complex relationships among various boron recovery factors, we compare different advanced machine learning regression models to provide valuable insights into how these key factors impact system performance. We find that three key driving factors (i.e., pH, boron concentration, and membrane orientation) significantly affect boron recovery performance in the forward osmosis process. The best prediction accuracy with a high r-square (R<sup>2</sup>, 95.4 %) is achieved via the XGBoost model combined with the particle swarm optimization algorithm, demonstrating its remarkable ability for precise boron recovery prediction. By employing this hybrid model to optimize the search space, the overall performance of forward osmosis system was significantly enhanced, with a predicted boron rejection rate as high as 98.28 %, outperforming the reported values. Our work demonstrates the powerful potential of advanced machine learning for efficiently predicting boron recovery for water quality improvement and resource recovery applications.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"281 \",\"pages\":\"Article 123700\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425006098\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425006098","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Machine learning-guided performance prediction of forward osmosis polymeric membranes for boron recovery
Efficient recovery of boron is one of the crucial strategies of sustainably extracting valuable resource from water. It however still remains a key technological challenge to efficiently predict boron recovery from unconventional water resources such as underground water, geothermal water and seawater, which are still few concerned in open literature. To effectively address this issue, herein we propose an efficient strategy to precisely predict boron recovery performance and then explore mechanism in forward osmosis process via advanced machine learning techniques with better model performance. Specifically, to explore the complex relationships among various boron recovery factors, we compare different advanced machine learning regression models to provide valuable insights into how these key factors impact system performance. We find that three key driving factors (i.e., pH, boron concentration, and membrane orientation) significantly affect boron recovery performance in the forward osmosis process. The best prediction accuracy with a high r-square (R2, 95.4 %) is achieved via the XGBoost model combined with the particle swarm optimization algorithm, demonstrating its remarkable ability for precise boron recovery prediction. By employing this hybrid model to optimize the search space, the overall performance of forward osmosis system was significantly enhanced, with a predicted boron rejection rate as high as 98.28 %, outperforming the reported values. Our work demonstrates the powerful potential of advanced machine learning for efficiently predicting boron recovery for water quality improvement and resource recovery applications.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.