机器学习驱动的还原金红石二氧化钛表面重构探索

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yonghyuk Lee, Xiaobo Chen, Sabrina M. Gericke, Meng Li, Dmitri N. Zakharov, Ashley R. Head, Judith C. Yang, Anastassia N. Alexandrova
{"title":"机器学习驱动的还原金红石二氧化钛表面重构探索","authors":"Yonghyuk Lee,&nbsp;Xiaobo Chen,&nbsp;Sabrina M. Gericke,&nbsp;Meng Li,&nbsp;Dmitri N. Zakharov,&nbsp;Ashley R. Head,&nbsp;Judith C. Yang,&nbsp;Anastassia N. Alexandrova","doi":"10.1002/anie.202501017","DOIUrl":null,"url":null,"abstract":"<p>Titanium dioxide (TiO<sub>2</sub>) is widely used as a catalyst support due to its stability, tunable electronic properties, and surface oxygen vacancies, which are crucial for catalytic processes such as the reverse water-gas shift (RWGS) reaction. Reduced TiO<sub>2</sub> surfaces undergo complex surface reconstructions that endow unique properties but are computationally challenging to describe. In this study, we utilize machine-learning interatomic potentials (MLIPs) integrated with an active-learning workflow to efficiently explore reduced rutile TiO<sub>2</sub> surfaces. This approach enabled the prediction of a phase diagram as a function of oxygen chemical potential, revealing a variety of reconstructed phases, including a previously unreported subsurface shear plane structure. We further investigate the electronic properties of these surfaces and validate our results by comparing experimental and theoretical high-resolution transmission electron microscopy (HRTEM). Our findings provide new insights into how extreme surface reductions influence the structural and electronic properties of TiO<sub>2</sub>, with potential implications for catalyst design.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 26","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning-Driven Exploration of Surface Reconstructions of Reduced Rutile TiO2\",\"authors\":\"Yonghyuk Lee,&nbsp;Xiaobo Chen,&nbsp;Sabrina M. Gericke,&nbsp;Meng Li,&nbsp;Dmitri N. Zakharov,&nbsp;Ashley R. Head,&nbsp;Judith C. Yang,&nbsp;Anastassia N. Alexandrova\",\"doi\":\"10.1002/anie.202501017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Titanium dioxide (TiO<sub>2</sub>) is widely used as a catalyst support due to its stability, tunable electronic properties, and surface oxygen vacancies, which are crucial for catalytic processes such as the reverse water-gas shift (RWGS) reaction. Reduced TiO<sub>2</sub> surfaces undergo complex surface reconstructions that endow unique properties but are computationally challenging to describe. In this study, we utilize machine-learning interatomic potentials (MLIPs) integrated with an active-learning workflow to efficiently explore reduced rutile TiO<sub>2</sub> surfaces. This approach enabled the prediction of a phase diagram as a function of oxygen chemical potential, revealing a variety of reconstructed phases, including a previously unreported subsurface shear plane structure. We further investigate the electronic properties of these surfaces and validate our results by comparing experimental and theoretical high-resolution transmission electron microscopy (HRTEM). Our findings provide new insights into how extreme surface reductions influence the structural and electronic properties of TiO<sub>2</sub>, with potential implications for catalyst design.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 26\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501017\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钛(TiO2)由于其稳定性、可调谐的电子性质和表面氧空位而被广泛用作催化剂载体,这对于诸如逆水气变换(RWGS)反应等催化过程至关重要。还原后的TiO2表面经过复杂的表面重建,具有独特的性质,但在计算上难以描述。在这项研究中,我们利用机器学习原子间电位(MLIPs)与主动学习工作流程相结合,有效地探索还原金红石型TiO2表面。这种方法能够预测氧化学势函数的相图,揭示各种重建相,包括以前未报道的地下剪切面结构。我们进一步研究了这些表面的电子特性,并通过比较实验和理论的高分辨率透射电子显微镜(HRTEM)验证了我们的结果。我们的研究结果为极端表面还原如何影响TiO2的结构和电子性能提供了新的见解,对催化剂设计具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-Learning-Driven Exploration of Surface Reconstructions of Reduced Rutile TiO2

Machine-Learning-Driven Exploration of Surface Reconstructions of Reduced Rutile TiO2

Titanium dioxide (TiO2) is widely used as a catalyst support due to its stability, tunable electronic properties, and surface oxygen vacancies, which are crucial for catalytic processes such as the reverse water-gas shift (RWGS) reaction. Reduced TiO2 surfaces undergo complex surface reconstructions that endow unique properties but are computationally challenging to describe. In this study, we utilize machine-learning interatomic potentials (MLIPs) integrated with an active-learning workflow to efficiently explore reduced rutile TiO2 surfaces. This approach enabled the prediction of a phase diagram as a function of oxygen chemical potential, revealing a variety of reconstructed phases, including a previously unreported subsurface shear plane structure. We further investigate the electronic properties of these surfaces and validate our results by comparing experimental and theoretical high-resolution transmission electron microscopy (HRTEM). Our findings provide new insights into how extreme surface reductions influence the structural and electronic properties of TiO2, with potential implications for catalyst design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信