{"title":"浆泡柱反应器中 PET 加氢分解的建模与优化","authors":"Jae Hwan Choi, Chan Kim, Jong Min Lee","doi":"10.1021/acs.iecr.4c04608","DOIUrl":null,"url":null,"abstract":"As interest in polyethylene terephthalate (PET) recycling grows, research into PET hydrogenolysis has expanded, yet reactor design studies remain limited. This work presents a mathematical model for a three-phase slurry bubble column reactor, chosen for its suitability in high-pressure and viscous conditions. Using hydrodynamic correlations and a GPU-based optimization solver, the model simulates and optimizes reactor performance. Results reveal that viscosity, influenced by polymer molecular weight and solvent ratio, critically impacts PET conversion rates. Catalyst size and feed proportion also significantly affect conversion via changes in axial dispersion, mass transfer, and reaction kinetics. These findings underscore the importance of optimizing viscosity and other reactor parameters to improve the efficiency of PET hydrogenolysis, supporting more effective industrial recycling strategies.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"27 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Optimization of PET Hydrogenolysis in a Slurry Bubble Column Reactor\",\"authors\":\"Jae Hwan Choi, Chan Kim, Jong Min Lee\",\"doi\":\"10.1021/acs.iecr.4c04608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As interest in polyethylene terephthalate (PET) recycling grows, research into PET hydrogenolysis has expanded, yet reactor design studies remain limited. This work presents a mathematical model for a three-phase slurry bubble column reactor, chosen for its suitability in high-pressure and viscous conditions. Using hydrodynamic correlations and a GPU-based optimization solver, the model simulates and optimizes reactor performance. Results reveal that viscosity, influenced by polymer molecular weight and solvent ratio, critically impacts PET conversion rates. Catalyst size and feed proportion also significantly affect conversion via changes in axial dispersion, mass transfer, and reaction kinetics. These findings underscore the importance of optimizing viscosity and other reactor parameters to improve the efficiency of PET hydrogenolysis, supporting more effective industrial recycling strategies.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c04608\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04608","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Modeling and Optimization of PET Hydrogenolysis in a Slurry Bubble Column Reactor
As interest in polyethylene terephthalate (PET) recycling grows, research into PET hydrogenolysis has expanded, yet reactor design studies remain limited. This work presents a mathematical model for a three-phase slurry bubble column reactor, chosen for its suitability in high-pressure and viscous conditions. Using hydrodynamic correlations and a GPU-based optimization solver, the model simulates and optimizes reactor performance. Results reveal that viscosity, influenced by polymer molecular weight and solvent ratio, critically impacts PET conversion rates. Catalyst size and feed proportion also significantly affect conversion via changes in axial dispersion, mass transfer, and reaction kinetics. These findings underscore the importance of optimizing viscosity and other reactor parameters to improve the efficiency of PET hydrogenolysis, supporting more effective industrial recycling strategies.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.