用于同步产生皮秒脉冲电子束和电磁辐射的等离子体介导纳米阴极

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan Shen, Ningsheng Xu, Zhaolong Cao, Zheyu Song, Dong Han, Songyang Xie, Yang Xing, Yanlin Ke, Huanjun Chen, Shaozhi Deng
{"title":"用于同步产生皮秒脉冲电子束和电磁辐射的等离子体介导纳米阴极","authors":"Yan Shen,&nbsp;Ningsheng Xu,&nbsp;Zhaolong Cao,&nbsp;Zheyu Song,&nbsp;Dong Han,&nbsp;Songyang Xie,&nbsp;Yang Xing,&nbsp;Yanlin Ke,&nbsp;Huanjun Chen,&nbsp;Shaozhi Deng","doi":"10.1002/adma.202503655","DOIUrl":null,"url":null,"abstract":"<p>Vacuum electronic devices offer superior electron mobility and spatiotemporal electron manipulating precision, with recent challenges focusing on ultrafast electron pulses for high-frequency, high-energy, and high-resolution applications. Plasmon-mediated electron emission (PMEE) nanocathodes provide a promising solution by producing high-quality ultrafast electron pulses while simplifying the electron beam manipulation. In this study, we developed a PMEE Au-on-Gr nanocathode using vertically aligned few-layer graphene decorated with gold nanoparticles, enabling synchronized generation of picosecond pulsed electron beam and electromagnetic radiation. The nanocathode achieved 80 MHz electron pulses with a 500 ps pulsewidth, 0.91 A·cm<sup>−2</sup> peak current density, 6.53% external quantum efficiency, and 8.81 × 10<sup>9</sup> A·m<sup>−2</sup>·sr<sup>−1</sup>·V<sup>−1</sup> reduced brightness. Additionally, it exhibited a 7.1° divergence angle and 0.97 eV energy spread under low excitations. Synchronized radiation pulses at 2.3, 5.7, and 9.2 GHz corresponded to electron pulse features. The excellent performance stems from plasmonic field enhancement and efficient hot electron generation driven by localized surface plasmon resonance (LSPR) in the PMEE nanocathode. The dynamic effects of high-energy hot electron injection at the Au-Gr interface also play a critical role. This system enables compact, room-temperature, low-power vacuum electronic devices for ultra-high spatiotemporal resolution and high-frequency applications, driving progress in materials science and nanotechnology.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 26","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmon-Mediated Nanocathode for Synchronized Generation of Picosecond Pulsed Electron Beam and Electromagnetic Radiation\",\"authors\":\"Yan Shen,&nbsp;Ningsheng Xu,&nbsp;Zhaolong Cao,&nbsp;Zheyu Song,&nbsp;Dong Han,&nbsp;Songyang Xie,&nbsp;Yang Xing,&nbsp;Yanlin Ke,&nbsp;Huanjun Chen,&nbsp;Shaozhi Deng\",\"doi\":\"10.1002/adma.202503655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vacuum electronic devices offer superior electron mobility and spatiotemporal electron manipulating precision, with recent challenges focusing on ultrafast electron pulses for high-frequency, high-energy, and high-resolution applications. Plasmon-mediated electron emission (PMEE) nanocathodes provide a promising solution by producing high-quality ultrafast electron pulses while simplifying the electron beam manipulation. In this study, we developed a PMEE Au-on-Gr nanocathode using vertically aligned few-layer graphene decorated with gold nanoparticles, enabling synchronized generation of picosecond pulsed electron beam and electromagnetic radiation. The nanocathode achieved 80 MHz electron pulses with a 500 ps pulsewidth, 0.91 A·cm<sup>−2</sup> peak current density, 6.53% external quantum efficiency, and 8.81 × 10<sup>9</sup> A·m<sup>−2</sup>·sr<sup>−1</sup>·V<sup>−1</sup> reduced brightness. Additionally, it exhibited a 7.1° divergence angle and 0.97 eV energy spread under low excitations. Synchronized radiation pulses at 2.3, 5.7, and 9.2 GHz corresponded to electron pulse features. The excellent performance stems from plasmonic field enhancement and efficient hot electron generation driven by localized surface plasmon resonance (LSPR) in the PMEE nanocathode. The dynamic effects of high-energy hot electron injection at the Au-Gr interface also play a critical role. This system enables compact, room-temperature, low-power vacuum electronic devices for ultra-high spatiotemporal resolution and high-frequency applications, driving progress in materials science and nanotechnology.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 26\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202503655\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202503655","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

真空电子器件提供了优越的电子迁移率和时空电子操纵精度,最近的挑战集中在高频,高能和高分辨率应用的超快电子脉冲。等离子体介导的电子发射(PMEE)纳米阴极提供了一个有前途的解决方案,产生高质量的超快电子脉冲,同时简化了电子束的操作。在这项研究中,我们开发了一种PMEE Au-on-Gr纳米阴极,使用垂直排列的几层石墨烯装饰金纳米粒子,使皮秒脉冲电子束和电磁辐射同步产生。该纳米阴极实现了80 MHz的电子脉冲,脉冲宽度为500 ps,峰值电流密度为0.91 a·cm−2,外量子效率为6.53%,亮度降低8.81 × 109 a·m−2·sr−1·V−1。此外,在低激励下,它的发散角为7.1°,能量扩散为0.97 eV。2.3、5.7和9.2 GHz同步辐射脉冲对应于电子脉冲特征。PMEE纳米阴极的优异性能源于等离子体场增强和局部表面等离子体共振(LSPR)驱动的高效热电子生成。高能热电子注入在Au-Gr界面的动力学效应也起着关键作用。该系统可实现紧凑、室温、低功耗的真空电子器件,用于超高时空分辨率和高频应用,推动材料科学和纳米技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasmon-Mediated Nanocathode for Synchronized Generation of Picosecond Pulsed Electron Beam and Electromagnetic Radiation

Plasmon-Mediated Nanocathode for Synchronized Generation of Picosecond Pulsed Electron Beam and Electromagnetic Radiation

Plasmon-Mediated Nanocathode for Synchronized Generation of Picosecond Pulsed Electron Beam and Electromagnetic Radiation

Plasmon-Mediated Nanocathode for Synchronized Generation of Picosecond Pulsed Electron Beam and Electromagnetic Radiation

Plasmon-Mediated Nanocathode for Synchronized Generation of Picosecond Pulsed Electron Beam and Electromagnetic Radiation

Vacuum electronic devices offer superior electron mobility and spatiotemporal electron manipulating precision, with recent challenges focusing on ultrafast electron pulses for high-frequency, high-energy, and high-resolution applications. Plasmon-mediated electron emission (PMEE) nanocathodes provide a promising solution by producing high-quality ultrafast electron pulses while simplifying the electron beam manipulation. In this study, we developed a PMEE Au-on-Gr nanocathode using vertically aligned few-layer graphene decorated with gold nanoparticles, enabling synchronized generation of picosecond pulsed electron beam and electromagnetic radiation. The nanocathode achieved 80 MHz electron pulses with a 500 ps pulsewidth, 0.91 A·cm−2 peak current density, 6.53% external quantum efficiency, and 8.81 × 109 A·m−2·sr−1·V−1 reduced brightness. Additionally, it exhibited a 7.1° divergence angle and 0.97 eV energy spread under low excitations. Synchronized radiation pulses at 2.3, 5.7, and 9.2 GHz corresponded to electron pulse features. The excellent performance stems from plasmonic field enhancement and efficient hot electron generation driven by localized surface plasmon resonance (LSPR) in the PMEE nanocathode. The dynamic effects of high-energy hot electron injection at the Au-Gr interface also play a critical role. This system enables compact, room-temperature, low-power vacuum electronic devices for ultra-high spatiotemporal resolution and high-frequency applications, driving progress in materials science and nanotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信