Jussi Mäkinen, Emilie E. Ellis, Laura H. Antão, Andréa Davrinche, Anna-Liisa Laine, Marjo Saastamoinen, Irene Conenna, Maria Hällfors, Andrea Santangeli, Elina Kaarlejärvi, Janne Heliölä, Ida-Maria Huikkonen, Mikko Kuussaari, Reima Leinonen, Aleksi Lehikoinen, Juha Pöyry, Anna Suuronen, Maija Salemaa, Tiina Tonteri, Kristiina M. Vuorio, Birger Skjelbred, Marko Järvinen, Stina Drakare, Laurence Carvalho, Erik Welk, Gunnar Seidler, Pieter Vangansbeke, František Máliš, Radim Hédl, Alistair G. Auffret, Jan Plue, Pieter De Frenne, Jesse M. Kalwij, Jarno Vanhatalo, Tomas Roslin
{"title":"气候变暖对北方群落热均一化的响应","authors":"Jussi Mäkinen, Emilie E. Ellis, Laura H. Antão, Andréa Davrinche, Anna-Liisa Laine, Marjo Saastamoinen, Irene Conenna, Maria Hällfors, Andrea Santangeli, Elina Kaarlejärvi, Janne Heliölä, Ida-Maria Huikkonen, Mikko Kuussaari, Reima Leinonen, Aleksi Lehikoinen, Juha Pöyry, Anna Suuronen, Maija Salemaa, Tiina Tonteri, Kristiina M. Vuorio, Birger Skjelbred, Marko Järvinen, Stina Drakare, Laurence Carvalho, Erik Welk, Gunnar Seidler, Pieter Vangansbeke, František Máliš, Radim Hédl, Alistair G. Auffret, Jan Plue, Pieter De Frenne, Jesse M. Kalwij, Jarno Vanhatalo, Tomas Roslin","doi":"10.1073/pnas.2415260122","DOIUrl":null,"url":null,"abstract":"Globally, rising temperatures are increasingly favoring warm-affiliated species. Although changes in community composition are typically measured by the mean temperature affinity of species (the community temperature index, CTI), they may be driven by different processes and accompanied by shifts in the diversity of temperature affinities and breadth of species thermal niches. To resolve the pathways to community warming in Finnish flora and fauna, we examined multidecadal changes in the dominance and diversity of temperature affinities among understory forest plant, freshwater phytoplankton, butterfly, moth, and bird communities. CTI increased for all animal communities, with no change observed for plants or phytoplankton. In addition, the diversity of temperature affinities declined for all groups except butterflies, and this loss was more pronounced for the fastest-warming communities. These changes were driven in animals mainly by a decrease in cold-affiliated species and an increase in warm-affiliated species. In plants and phytoplankton the decline of thermal diversity was driven by declines of both cold- and warm-affiliated species. Plant and moth communities were increasingly dominated by thermal specialist species, and birds by thermal generalists. In general, climate warming outpaced changes in both the mean and diversity of temperature affinities of communities. Our results highlight the complex dynamics underpinning the thermal reorganization of communities across a large spatiotemporal gradient, revealing that extinctions of cold-affiliated species and colonization by warm-affiliated species lag behind changes in ambient temperature, while communities become less thermally diverse. Such changes can have important implications for community structure and ecosystem functioning under accelerating rates of climate change.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"43 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal homogenization of boreal communities in response to climate warming\",\"authors\":\"Jussi Mäkinen, Emilie E. Ellis, Laura H. Antão, Andréa Davrinche, Anna-Liisa Laine, Marjo Saastamoinen, Irene Conenna, Maria Hällfors, Andrea Santangeli, Elina Kaarlejärvi, Janne Heliölä, Ida-Maria Huikkonen, Mikko Kuussaari, Reima Leinonen, Aleksi Lehikoinen, Juha Pöyry, Anna Suuronen, Maija Salemaa, Tiina Tonteri, Kristiina M. Vuorio, Birger Skjelbred, Marko Järvinen, Stina Drakare, Laurence Carvalho, Erik Welk, Gunnar Seidler, Pieter Vangansbeke, František Máliš, Radim Hédl, Alistair G. Auffret, Jan Plue, Pieter De Frenne, Jesse M. Kalwij, Jarno Vanhatalo, Tomas Roslin\",\"doi\":\"10.1073/pnas.2415260122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, rising temperatures are increasingly favoring warm-affiliated species. Although changes in community composition are typically measured by the mean temperature affinity of species (the community temperature index, CTI), they may be driven by different processes and accompanied by shifts in the diversity of temperature affinities and breadth of species thermal niches. To resolve the pathways to community warming in Finnish flora and fauna, we examined multidecadal changes in the dominance and diversity of temperature affinities among understory forest plant, freshwater phytoplankton, butterfly, moth, and bird communities. CTI increased for all animal communities, with no change observed for plants or phytoplankton. In addition, the diversity of temperature affinities declined for all groups except butterflies, and this loss was more pronounced for the fastest-warming communities. These changes were driven in animals mainly by a decrease in cold-affiliated species and an increase in warm-affiliated species. In plants and phytoplankton the decline of thermal diversity was driven by declines of both cold- and warm-affiliated species. Plant and moth communities were increasingly dominated by thermal specialist species, and birds by thermal generalists. In general, climate warming outpaced changes in both the mean and diversity of temperature affinities of communities. Our results highlight the complex dynamics underpinning the thermal reorganization of communities across a large spatiotemporal gradient, revealing that extinctions of cold-affiliated species and colonization by warm-affiliated species lag behind changes in ambient temperature, while communities become less thermally diverse. Such changes can have important implications for community structure and ecosystem functioning under accelerating rates of climate change.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2415260122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2415260122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Thermal homogenization of boreal communities in response to climate warming
Globally, rising temperatures are increasingly favoring warm-affiliated species. Although changes in community composition are typically measured by the mean temperature affinity of species (the community temperature index, CTI), they may be driven by different processes and accompanied by shifts in the diversity of temperature affinities and breadth of species thermal niches. To resolve the pathways to community warming in Finnish flora and fauna, we examined multidecadal changes in the dominance and diversity of temperature affinities among understory forest plant, freshwater phytoplankton, butterfly, moth, and bird communities. CTI increased for all animal communities, with no change observed for plants or phytoplankton. In addition, the diversity of temperature affinities declined for all groups except butterflies, and this loss was more pronounced for the fastest-warming communities. These changes were driven in animals mainly by a decrease in cold-affiliated species and an increase in warm-affiliated species. In plants and phytoplankton the decline of thermal diversity was driven by declines of both cold- and warm-affiliated species. Plant and moth communities were increasingly dominated by thermal specialist species, and birds by thermal generalists. In general, climate warming outpaced changes in both the mean and diversity of temperature affinities of communities. Our results highlight the complex dynamics underpinning the thermal reorganization of communities across a large spatiotemporal gradient, revealing that extinctions of cold-affiliated species and colonization by warm-affiliated species lag behind changes in ambient temperature, while communities become less thermally diverse. Such changes can have important implications for community structure and ecosystem functioning under accelerating rates of climate change.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.