多样化的单链 DNA 退火蛋白文库可实现跨细菌门的高效基因组编辑

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gabriel T. Filsinger, Aaron Mychack, Evan Lyerly, Camilla Henriksen, Thomas M. Bartlett, Helene Kuchwara, Simon Eitzinger, Thomas G. Bernhardt, Suzanne Walker, George M. Church, Timothy M. Wannier
{"title":"多样化的单链 DNA 退火蛋白文库可实现跨细菌门的高效基因组编辑","authors":"Gabriel T. Filsinger, Aaron Mychack, Evan Lyerly, Camilla Henriksen, Thomas M. Bartlett, Helene Kuchwara, Simon Eitzinger, Thomas G. Bernhardt, Suzanne Walker, George M. Church, Timothy M. Wannier","doi":"10.1073/pnas.2414342122","DOIUrl":null,"url":null,"abstract":"Genome modification is essential for studying and engineering bacteria, yet making efficient modifications to most species remains challenging. Bacteriophage-encoded single-stranded DNA–annealing proteins (SSAPs) can facilitate efficient genome editing by homologous recombination, but their typically narrow host range limits broad application. Here, we demonstrate that a single library of 227 SSAPs enables efficient genome-editing across six diverse bacteria from three divergent classes: Actinomycetia ( <jats:italic>Mycobacterium smegmatis</jats:italic> and <jats:italic>Corynebacterium glutamicum</jats:italic> ), Alphaproteobacteria ( <jats:italic>Agrobacterium tumefaciens</jats:italic> and <jats:italic>Caulobacter crescentus</jats:italic> ), and Bacilli ( <jats:italic>Lactococcus lactis</jats:italic> and <jats:italic>Staphylococcus aureus</jats:italic> ). Surprisingly, the most effective SSAPs frequently originated from phyla distinct from their bacterial hosts, challenging the assumption that phylogenetic relatedness is necessary for recombination efficiency, and supporting the value of a large unbiased library. Across these hosts, the identified SSAPs enable genome modifications requiring efficient homologous recombination, demonstrated through three examples. First, we use SSAPs with Cas9 in <jats:italic>C. crescentus</jats:italic> to introduce single amino acid mutations with &gt;70% efficiency. Second, we adapt SSAPs for dsDNA editing in <jats:italic>C. glutamicum</jats:italic> and <jats:italic>S. aureus</jats:italic> , enabling one-step gene knockouts using PCR products. Finally, we apply SSAPs for multiplexed editing in <jats:italic>S. aureus</jats:italic> to precisely map the interaction between a conserved protein and a small-molecule inhibitor. Overall, this library-based SSAP screen expands engineering capabilities across diverse, previously recalcitrant microbes, enabling efficient genetic manipulation for both fundamental research and biotechnological applications.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diverse single-stranded DNA–annealing protein library enables efficient genome editing across bacterial phyla\",\"authors\":\"Gabriel T. Filsinger, Aaron Mychack, Evan Lyerly, Camilla Henriksen, Thomas M. Bartlett, Helene Kuchwara, Simon Eitzinger, Thomas G. Bernhardt, Suzanne Walker, George M. Church, Timothy M. Wannier\",\"doi\":\"10.1073/pnas.2414342122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome modification is essential for studying and engineering bacteria, yet making efficient modifications to most species remains challenging. Bacteriophage-encoded single-stranded DNA–annealing proteins (SSAPs) can facilitate efficient genome editing by homologous recombination, but their typically narrow host range limits broad application. Here, we demonstrate that a single library of 227 SSAPs enables efficient genome-editing across six diverse bacteria from three divergent classes: Actinomycetia ( <jats:italic>Mycobacterium smegmatis</jats:italic> and <jats:italic>Corynebacterium glutamicum</jats:italic> ), Alphaproteobacteria ( <jats:italic>Agrobacterium tumefaciens</jats:italic> and <jats:italic>Caulobacter crescentus</jats:italic> ), and Bacilli ( <jats:italic>Lactococcus lactis</jats:italic> and <jats:italic>Staphylococcus aureus</jats:italic> ). Surprisingly, the most effective SSAPs frequently originated from phyla distinct from their bacterial hosts, challenging the assumption that phylogenetic relatedness is necessary for recombination efficiency, and supporting the value of a large unbiased library. Across these hosts, the identified SSAPs enable genome modifications requiring efficient homologous recombination, demonstrated through three examples. First, we use SSAPs with Cas9 in <jats:italic>C. crescentus</jats:italic> to introduce single amino acid mutations with &gt;70% efficiency. Second, we adapt SSAPs for dsDNA editing in <jats:italic>C. glutamicum</jats:italic> and <jats:italic>S. aureus</jats:italic> , enabling one-step gene knockouts using PCR products. Finally, we apply SSAPs for multiplexed editing in <jats:italic>S. aureus</jats:italic> to precisely map the interaction between a conserved protein and a small-molecule inhibitor. Overall, this library-based SSAP screen expands engineering capabilities across diverse, previously recalcitrant microbes, enabling efficient genetic manipulation for both fundamental research and biotechnological applications.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2414342122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2414342122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基因组修饰对于研究和改造细菌至关重要,但对大多数物种进行有效修饰仍然具有挑战性。噬菌体编码的单链dna退火蛋白(SSAPs)可以通过同源重组促进高效的基因组编辑,但其典型的窄宿主范围限制了其广泛应用。在这里,我们证明了227个srap库能够对来自三个不同类别的六种不同细菌进行有效的基因组编辑:放线菌(耻垢分枝杆菌和谷氨酸棒状杆菌)、甲变形菌(农杆菌和新月根杆菌)和杆菌(乳酸乳球菌和金黄色葡萄球菌)。令人惊讶的是,最有效的ssps通常来自与其细菌宿主不同的门,这挑战了系统发育相关性是重组效率所必需的假设,并支持了大型无偏差文库的价值。通过三个例子证明,在这些宿主中,鉴定的saps能够实现需要有效同源重组的基因组修饰。首先,我们使用含有Cas9的SSAPs在月牙菇中引入单氨基酸突变,效率为70%。其次,我们将saps用于谷氨酸葡萄球菌和金黄色葡萄球菌的dsDNA编辑,实现了使用PCR产物的一步基因敲除。最后,我们在金黄色葡萄球菌中应用saps进行多路编辑,以精确绘制保守蛋白和小分子抑制剂之间的相互作用。总的来说,这个基于文库的SSAP筛选扩展了不同的工程能力,以前是顽固的微生物,为基础研究和生物技术应用提供了有效的基因操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A diverse single-stranded DNA–annealing protein library enables efficient genome editing across bacterial phyla
Genome modification is essential for studying and engineering bacteria, yet making efficient modifications to most species remains challenging. Bacteriophage-encoded single-stranded DNA–annealing proteins (SSAPs) can facilitate efficient genome editing by homologous recombination, but their typically narrow host range limits broad application. Here, we demonstrate that a single library of 227 SSAPs enables efficient genome-editing across six diverse bacteria from three divergent classes: Actinomycetia ( Mycobacterium smegmatis and Corynebacterium glutamicum ), Alphaproteobacteria ( Agrobacterium tumefaciens and Caulobacter crescentus ), and Bacilli ( Lactococcus lactis and Staphylococcus aureus ). Surprisingly, the most effective SSAPs frequently originated from phyla distinct from their bacterial hosts, challenging the assumption that phylogenetic relatedness is necessary for recombination efficiency, and supporting the value of a large unbiased library. Across these hosts, the identified SSAPs enable genome modifications requiring efficient homologous recombination, demonstrated through three examples. First, we use SSAPs with Cas9 in C. crescentus to introduce single amino acid mutations with >70% efficiency. Second, we adapt SSAPs for dsDNA editing in C. glutamicum and S. aureus , enabling one-step gene knockouts using PCR products. Finally, we apply SSAPs for multiplexed editing in S. aureus to precisely map the interaction between a conserved protein and a small-molecule inhibitor. Overall, this library-based SSAP screen expands engineering capabilities across diverse, previously recalcitrant microbes, enabling efficient genetic manipulation for both fundamental research and biotechnological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信