100k选择困境的计算分析:决策属性、权衡结构和基于模型的预测

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sudeep Bhatia, Simon T. van Baal, Feiyi Wang, Lukasz Walasek
{"title":"100k选择困境的计算分析:决策属性、权衡结构和基于模型的预测","authors":"Sudeep Bhatia, Simon T. van Baal, Feiyi Wang, Lukasz Walasek","doi":"10.1073/pnas.2406489122","DOIUrl":null,"url":null,"abstract":"We present a dataset of over 100 K textual descriptions of real-life choice dilemmas, obtained from social media posts and large-scale survey data. Using large language models (LLMs), we extract hundreds of choice attributes at play in these dilemmas and map them onto a common representational space. This representation allows us to quantify the broader themes and specific trade-offs inherent in life choices and analyze how they vary across different contexts. We also present our dilemmas to human participants and find that our LLM pipeline, when combined with established decision models, accurately predicts people’s choices, outperforming models based on unstructured textual content, demographics, and personality. In this way, our research provides insights into the attributes, outcomes, and goals that underpin life choices, and shows how large-scale LLM-based structure extraction can be used in combination with existing scientific theory to study complex real-world human behavior.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"64 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis of 100 K choice dilemmas: Decision attributes, trade-off structures, and model-based prediction\",\"authors\":\"Sudeep Bhatia, Simon T. van Baal, Feiyi Wang, Lukasz Walasek\",\"doi\":\"10.1073/pnas.2406489122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a dataset of over 100 K textual descriptions of real-life choice dilemmas, obtained from social media posts and large-scale survey data. Using large language models (LLMs), we extract hundreds of choice attributes at play in these dilemmas and map them onto a common representational space. This representation allows us to quantify the broader themes and specific trade-offs inherent in life choices and analyze how they vary across different contexts. We also present our dilemmas to human participants and find that our LLM pipeline, when combined with established decision models, accurately predicts people’s choices, outperforming models based on unstructured textual content, demographics, and personality. In this way, our research provides insights into the attributes, outcomes, and goals that underpin life choices, and shows how large-scale LLM-based structure extraction can be used in combination with existing scientific theory to study complex real-world human behavior.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2406489122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2406489122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个超过10万的现实生活中的选择困境的文本描述的数据集,从社交媒体帖子和大规模的调查数据中获得。使用大型语言模型(llm),我们提取了在这些困境中起作用的数百个选择属性,并将它们映射到一个共同的表示空间。这种表现使我们能够量化生活选择中更广泛的主题和特定的权衡,并分析它们在不同背景下的变化。我们还向人类参与者展示了我们的困境,并发现我们的法学硕士管道,当与已建立的决策模型相结合时,可以准确地预测人们的选择,优于基于非结构化文本内容,人口统计和个性的模型。通过这种方式,我们的研究提供了对支持生命选择的属性、结果和目标的见解,并展示了如何将基于llm的大规模结构提取与现有科学理论相结合,以研究复杂的现实世界人类行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational analysis of 100 K choice dilemmas: Decision attributes, trade-off structures, and model-based prediction
We present a dataset of over 100 K textual descriptions of real-life choice dilemmas, obtained from social media posts and large-scale survey data. Using large language models (LLMs), we extract hundreds of choice attributes at play in these dilemmas and map them onto a common representational space. This representation allows us to quantify the broader themes and specific trade-offs inherent in life choices and analyze how they vary across different contexts. We also present our dilemmas to human participants and find that our LLM pipeline, when combined with established decision models, accurately predicts people’s choices, outperforming models based on unstructured textual content, demographics, and personality. In this way, our research provides insights into the attributes, outcomes, and goals that underpin life choices, and shows how large-scale LLM-based structure extraction can be used in combination with existing scientific theory to study complex real-world human behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信