用于 NMC 阴极的固态上循环的原位衍射和原位透射 X 射线显微镜研究

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Matthew L. Nisbet, Diana Luong, Eva Allen, Sohyun Park, Tiffany L. Kinnibrugh, Joanne E. Stubbs, Peter J. Eng, John T. Vaughey, Tim T. Fister
{"title":"用于 NMC 阴极的固态上循环的原位衍射和原位透射 X 射线显微镜研究","authors":"Matthew L. Nisbet, Diana Luong, Eva Allen, Sohyun Park, Tiffany L. Kinnibrugh, Joanne E. Stubbs, Peter J. Eng, John T. Vaughey, Tim T. Fister","doi":"10.1002/aenm.202500698","DOIUrl":null,"url":null,"abstract":"Upcycling of recycled LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> (NMC622) cathodes offers an economical route to produce cathode materials with increased energy density (i.e., LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>, NMC811) that meet the performance needs of present-day electric vehicles. In this work, solid-state upcycling of NMC622 via calcination with Ni(OH)<sub>2</sub> and LiOH was monitored using in situ synchrotron powder X-ray diffraction measurements. Sequential Rietveld refinements indicate that the calcination proceeds by initially converting Ni(OH)<sub>2</sub> to a rocksalt NiO phase followed by lithiation of NiO to form LiNiO<sub>2</sub> (LNO), with both NMC and LNO phases present in nearly equal proportions at the calcination endpoint. Variable-energy transmission X-ray microscopy tomograms of upcycled samples reveal that the NMC and LNO domains are intermixed at sub-micron length scales. Depth-dependent analysis of multi-elemental fitting maps matches the expected NMC811 composition at the secondary particle level and indicates that transition metal diffusion is not limited by the secondary particle size.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"108 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Diffraction and Ex Situ Transmission X-Ray Microscopy Studies of Solid-State Upcycling for NMC Cathodes\",\"authors\":\"Matthew L. Nisbet, Diana Luong, Eva Allen, Sohyun Park, Tiffany L. Kinnibrugh, Joanne E. Stubbs, Peter J. Eng, John T. Vaughey, Tim T. Fister\",\"doi\":\"10.1002/aenm.202500698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upcycling of recycled LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> (NMC622) cathodes offers an economical route to produce cathode materials with increased energy density (i.e., LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>, NMC811) that meet the performance needs of present-day electric vehicles. In this work, solid-state upcycling of NMC622 via calcination with Ni(OH)<sub>2</sub> and LiOH was monitored using in situ synchrotron powder X-ray diffraction measurements. Sequential Rietveld refinements indicate that the calcination proceeds by initially converting Ni(OH)<sub>2</sub> to a rocksalt NiO phase followed by lithiation of NiO to form LiNiO<sub>2</sub> (LNO), with both NMC and LNO phases present in nearly equal proportions at the calcination endpoint. Variable-energy transmission X-ray microscopy tomograms of upcycled samples reveal that the NMC and LNO domains are intermixed at sub-micron length scales. Depth-dependent analysis of multi-elemental fitting maps matches the expected NMC811 composition at the secondary particle level and indicates that transition metal diffusion is not limited by the secondary particle size.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202500698\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500698","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对回收的 LiNi0.6Mn0.2Co0.2O2 (NMC622)阴极进行升级再循环为生产能量密度更高的阴极材料(即 LiNi0.8Mn0.1Co0.1O2,NMC811)提供了一条经济的途径,可满足当今电动汽车的性能需求。在这项工作中,利用原位同步辐射粉末 X 射线衍射测量法监测了 NMC622 通过与 Ni(OH)2 和 LiOH 一起煅烧而实现的固态上循环。序列 Rietveld 精炼表明,煅烧过程最初是将 Ni(OH)2 转化为岩石态 NiO 相,然后 NiO 锂化形成 LiNiO2 (LNO),在煅烧终点,NMC 和 LNO 相几乎以相同的比例存在。上循环样品的变能透射 X 射线显微断层图显示,NMC 和 LNO 域在亚微米长度尺度上相互混合。对多元素拟合图进行的深度依赖性分析与预期的 NMC811 二级颗粒组成相吻合,并表明过渡金属的扩散不受二级颗粒大小的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Diffraction and Ex Situ Transmission X-Ray Microscopy Studies of Solid-State Upcycling for NMC Cathodes

In Situ Diffraction and Ex Situ Transmission X-Ray Microscopy Studies of Solid-State Upcycling for NMC Cathodes
Upcycling of recycled LiNi0.6Mn0.2Co0.2O2 (NMC622) cathodes offers an economical route to produce cathode materials with increased energy density (i.e., LiNi0.8Mn0.1Co0.1O2, NMC811) that meet the performance needs of present-day electric vehicles. In this work, solid-state upcycling of NMC622 via calcination with Ni(OH)2 and LiOH was monitored using in situ synchrotron powder X-ray diffraction measurements. Sequential Rietveld refinements indicate that the calcination proceeds by initially converting Ni(OH)2 to a rocksalt NiO phase followed by lithiation of NiO to form LiNiO2 (LNO), with both NMC and LNO phases present in nearly equal proportions at the calcination endpoint. Variable-energy transmission X-ray microscopy tomograms of upcycled samples reveal that the NMC and LNO domains are intermixed at sub-micron length scales. Depth-dependent analysis of multi-elemental fitting maps matches the expected NMC811 composition at the secondary particle level and indicates that transition metal diffusion is not limited by the secondary particle size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信