{"title":"核糖体上 tRNA 的动力学非单调地取决于亚基间的旋转。","authors":"Sandra Byju,Paul C Whitford","doi":"10.1016/j.bpj.2025.04.018","DOIUrl":null,"url":null,"abstract":"In order to translate messenger RNA into proteins, the ribosome must coordinate a wide range of conformational rearrangements. Some steps involve individual molecules, whereas others require synchronization of multiple collective motions. For example, the ribosomal \"small\" subunit (∼1 MDa) is known to undergo rotational motion (∼10°) that is correlated with large-scale displacements of tRNA molecules (∼50Å). While decades of biochemical, single-molecule and structural analysis have provided many insights into the timing of these motions, little is known about how these dynamical processes influence each other. To address this, we use molecular simulations to isolate specific interactions that allow tRNA kinetics to be controlled by subunit rotation. Specifically, we applied an all-atom structure-based model to simulate movement of tRNA between ribosomal binding sites (P/E hybrid formation). These calculations reveal a pronounced non-monotonic dependence of tRNA kinetics on subunit rotation, where the rate of P/E formation initially increases and then decreases as the subunit rotates. In addition, there a sharp increase in rate for low degrees of rotation, suggesting that adoption of P/E tRNA conformations may occur early in the rotation process. Together, these calculations demonstrate how molecular structure gives rise to an intricate relationship between these complex rearrangements.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":"16 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"tRNA kinetics on the ribosome depends non-monotonically on intersubunit rotation.\",\"authors\":\"Sandra Byju,Paul C Whitford\",\"doi\":\"10.1016/j.bpj.2025.04.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to translate messenger RNA into proteins, the ribosome must coordinate a wide range of conformational rearrangements. Some steps involve individual molecules, whereas others require synchronization of multiple collective motions. For example, the ribosomal \\\"small\\\" subunit (∼1 MDa) is known to undergo rotational motion (∼10°) that is correlated with large-scale displacements of tRNA molecules (∼50Å). While decades of biochemical, single-molecule and structural analysis have provided many insights into the timing of these motions, little is known about how these dynamical processes influence each other. To address this, we use molecular simulations to isolate specific interactions that allow tRNA kinetics to be controlled by subunit rotation. Specifically, we applied an all-atom structure-based model to simulate movement of tRNA between ribosomal binding sites (P/E hybrid formation). These calculations reveal a pronounced non-monotonic dependence of tRNA kinetics on subunit rotation, where the rate of P/E formation initially increases and then decreases as the subunit rotates. In addition, there a sharp increase in rate for low degrees of rotation, suggesting that adoption of P/E tRNA conformations may occur early in the rotation process. Together, these calculations demonstrate how molecular structure gives rise to an intricate relationship between these complex rearrangements.\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.04.018\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.04.018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
tRNA kinetics on the ribosome depends non-monotonically on intersubunit rotation.
In order to translate messenger RNA into proteins, the ribosome must coordinate a wide range of conformational rearrangements. Some steps involve individual molecules, whereas others require synchronization of multiple collective motions. For example, the ribosomal "small" subunit (∼1 MDa) is known to undergo rotational motion (∼10°) that is correlated with large-scale displacements of tRNA molecules (∼50Å). While decades of biochemical, single-molecule and structural analysis have provided many insights into the timing of these motions, little is known about how these dynamical processes influence each other. To address this, we use molecular simulations to isolate specific interactions that allow tRNA kinetics to be controlled by subunit rotation. Specifically, we applied an all-atom structure-based model to simulate movement of tRNA between ribosomal binding sites (P/E hybrid formation). These calculations reveal a pronounced non-monotonic dependence of tRNA kinetics on subunit rotation, where the rate of P/E formation initially increases and then decreases as the subunit rotates. In addition, there a sharp increase in rate for low degrees of rotation, suggesting that adoption of P/E tRNA conformations may occur early in the rotation process. Together, these calculations demonstrate how molecular structure gives rise to an intricate relationship between these complex rearrangements.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.