纳米纤维素技术:生产、功能化以及在医学和制药中的应用 - 综述

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Mohammad Al-Zu'bi, Mizi Fan
{"title":"纳米纤维素技术:生产、功能化以及在医学和制药中的应用 - 综述","authors":"Mohammad Al-Zu'bi,&nbsp;Mizi Fan","doi":"10.1002/jbm.b.35585","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This review provides a comprehensive analysis of nanocellulose production, characterization, and applications, with a particular focus on its use in membranes and films for healthcare applications. The diverse sources of nanocellulose, including wood-based materials, agricultural byproducts, algae, and bacteria, are explored, highlighting their renewability, environmental benefits, and adaptability for specialized applications. The review also examines various pretreatment and processing methods, such as mechanical, chemical, and enzymatic treatments, outlining their roles in achieving desirable nanocellulose properties. Additionally, surface modification techniques, including amidation and esterification, are discussed for enhancing compatibility, stability, and performance when nanocellulose is integrated into composite materials. A novel mechanochemical approach is highlighted as a sustainable and energy-efficient fibrillation technique that reduces the environmental impact of nanocellulose production. Furthermore, the chemical modification and functionalization of nanocellulose are analyzed to expand its capabilities in advanced biomedical applications, including tissue engineering scaffolds that provide structural support for cell growth, wound dressings that leverage nanocellulose's antimicrobial and moisture-retentive properties, and drug delivery systems that utilize its biocompatibility and tunable release characteristics. The review concludes with future research directions, emphasizing the need for continued optimization of processing techniques, hybrid material development, and stimuli-responsive nanocellulose systems to unlock new biomedical and industrial applications.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocellulose Technologies: Production, Functionalization, and Applications in Medicine and Pharmaceuticals - A Review\",\"authors\":\"Mohammad Al-Zu'bi,&nbsp;Mizi Fan\",\"doi\":\"10.1002/jbm.b.35585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This review provides a comprehensive analysis of nanocellulose production, characterization, and applications, with a particular focus on its use in membranes and films for healthcare applications. The diverse sources of nanocellulose, including wood-based materials, agricultural byproducts, algae, and bacteria, are explored, highlighting their renewability, environmental benefits, and adaptability for specialized applications. The review also examines various pretreatment and processing methods, such as mechanical, chemical, and enzymatic treatments, outlining their roles in achieving desirable nanocellulose properties. Additionally, surface modification techniques, including amidation and esterification, are discussed for enhancing compatibility, stability, and performance when nanocellulose is integrated into composite materials. A novel mechanochemical approach is highlighted as a sustainable and energy-efficient fibrillation technique that reduces the environmental impact of nanocellulose production. Furthermore, the chemical modification and functionalization of nanocellulose are analyzed to expand its capabilities in advanced biomedical applications, including tissue engineering scaffolds that provide structural support for cell growth, wound dressings that leverage nanocellulose's antimicrobial and moisture-retentive properties, and drug delivery systems that utilize its biocompatibility and tunable release characteristics. The review concludes with future research directions, emphasizing the need for continued optimization of processing techniques, hybrid material development, and stimuli-responsive nanocellulose systems to unlock new biomedical and industrial applications.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35585\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35585","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本综述全面分析了纳米纤维素的生产、表征和应用,尤其侧重于其在医疗保健应用中的膜和薄膜用途。本综述探讨了纳米纤维素的各种来源,包括木质材料、农副产品、藻类和细菌,重点介绍了它们的可再生性、环境效益以及对特殊应用的适应性。综述还研究了各种预处理和加工方法,如机械、化学和酶处理,概述了它们在实现理想的纳米纤维素特性方面的作用。此外,还讨论了表面改性技术,包括酰胺化和酯化,以提高纳米纤维素与复合材料结合时的兼容性、稳定性和性能。重点介绍了一种新型机械化学方法,该方法是一种可持续的节能纤维化技术,可减少纳米纤维素生产对环境的影响。此外,还分析了纳米纤维素的化学修饰和功能化,以扩展其在先进生物医学应用中的能力,包括为细胞生长提供结构支持的组织工程支架、利用纳米纤维素的抗菌和保湿特性的伤口敷料,以及利用其生物相容性和可调释放特性的给药系统。综述最后提出了未来的研究方向,强调需要继续优化加工技术、开发混合材料和刺激响应型纳米纤维素系统,以开启新的生物医学和工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanocellulose Technologies: Production, Functionalization, and Applications in Medicine and Pharmaceuticals - A Review

This review provides a comprehensive analysis of nanocellulose production, characterization, and applications, with a particular focus on its use in membranes and films for healthcare applications. The diverse sources of nanocellulose, including wood-based materials, agricultural byproducts, algae, and bacteria, are explored, highlighting their renewability, environmental benefits, and adaptability for specialized applications. The review also examines various pretreatment and processing methods, such as mechanical, chemical, and enzymatic treatments, outlining their roles in achieving desirable nanocellulose properties. Additionally, surface modification techniques, including amidation and esterification, are discussed for enhancing compatibility, stability, and performance when nanocellulose is integrated into composite materials. A novel mechanochemical approach is highlighted as a sustainable and energy-efficient fibrillation technique that reduces the environmental impact of nanocellulose production. Furthermore, the chemical modification and functionalization of nanocellulose are analyzed to expand its capabilities in advanced biomedical applications, including tissue engineering scaffolds that provide structural support for cell growth, wound dressings that leverage nanocellulose's antimicrobial and moisture-retentive properties, and drug delivery systems that utilize its biocompatibility and tunable release characteristics. The review concludes with future research directions, emphasizing the need for continued optimization of processing techniques, hybrid material development, and stimuli-responsive nanocellulose systems to unlock new biomedical and industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信