Selma Benito-Martínez, Bárbara Pérez-Köhler, Marta Rodríguez, Celia Rivas-Santos, Jesús María Izco, José Ignacio Recalde, Gemma Pascual
{"title":"评估用于伤口愈合的胶原蛋白新疗法:小鼠模型方法","authors":"Selma Benito-Martínez, Bárbara Pérez-Köhler, Marta Rodríguez, Celia Rivas-Santos, Jesús María Izco, José Ignacio Recalde, Gemma Pascual","doi":"10.1111/iwj.70589","DOIUrl":null,"url":null,"abstract":"<p>Collagen proteins play important roles in wound healing and are of great interest in regenerative medicine. This study evaluated the efficacy of new collagen-based products and compared them to commercial products in a murine model of cutaneous healing. Circular excisional defects were generated on 72 Wistar rats. Six study groups were established according to the administered collagen treatment: Control (without treatment), SD-C (semidenatured), Catrix, Hy-C (hydrolyzed), N-C (native) and Helix3-CP. Seven and eighteen days post-surgery, animals were euthanized. Wound closure was macroscopically assessed by taking zenithal images of the defects. Morphological, histological and immunohistochemical studies were performed to evaluate the healing process. After 7 days, open areas and degree of epithelialization were similar among the groups. Significant differences were observed in contraction between control and the N-C and Helix3-CP groups. Untreated animals exhibited a more pronounced granulation tissue with a high number of inflammatory cells and a disorganised extracellular matrix with type III collagen deposition. After 18 days, animals treated with new collagen (Hy-C and N-C) exhibited accelerated wound closure, increased epithelialization and a more organised granulation tissue. Local administration of new collagen treatments promotes the progression of the reparative process and significantly accelerates wound closure compared with nontreated wounds.</p>","PeriodicalId":14451,"journal":{"name":"International Wound Journal","volume":"22 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iwj.70589","citationCount":"0","resultStr":"{\"title\":\"Assessing New Collagen Therapies for Wound Healing: A Murine Model Approach\",\"authors\":\"Selma Benito-Martínez, Bárbara Pérez-Köhler, Marta Rodríguez, Celia Rivas-Santos, Jesús María Izco, José Ignacio Recalde, Gemma Pascual\",\"doi\":\"10.1111/iwj.70589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Collagen proteins play important roles in wound healing and are of great interest in regenerative medicine. This study evaluated the efficacy of new collagen-based products and compared them to commercial products in a murine model of cutaneous healing. Circular excisional defects were generated on 72 Wistar rats. Six study groups were established according to the administered collagen treatment: Control (without treatment), SD-C (semidenatured), Catrix, Hy-C (hydrolyzed), N-C (native) and Helix3-CP. Seven and eighteen days post-surgery, animals were euthanized. Wound closure was macroscopically assessed by taking zenithal images of the defects. Morphological, histological and immunohistochemical studies were performed to evaluate the healing process. After 7 days, open areas and degree of epithelialization were similar among the groups. Significant differences were observed in contraction between control and the N-C and Helix3-CP groups. Untreated animals exhibited a more pronounced granulation tissue with a high number of inflammatory cells and a disorganised extracellular matrix with type III collagen deposition. After 18 days, animals treated with new collagen (Hy-C and N-C) exhibited accelerated wound closure, increased epithelialization and a more organised granulation tissue. Local administration of new collagen treatments promotes the progression of the reparative process and significantly accelerates wound closure compared with nontreated wounds.</p>\",\"PeriodicalId\":14451,\"journal\":{\"name\":\"International Wound Journal\",\"volume\":\"22 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iwj.70589\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Wound Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iwj.70589\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Wound Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iwj.70589","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Assessing New Collagen Therapies for Wound Healing: A Murine Model Approach
Collagen proteins play important roles in wound healing and are of great interest in regenerative medicine. This study evaluated the efficacy of new collagen-based products and compared them to commercial products in a murine model of cutaneous healing. Circular excisional defects were generated on 72 Wistar rats. Six study groups were established according to the administered collagen treatment: Control (without treatment), SD-C (semidenatured), Catrix, Hy-C (hydrolyzed), N-C (native) and Helix3-CP. Seven and eighteen days post-surgery, animals were euthanized. Wound closure was macroscopically assessed by taking zenithal images of the defects. Morphological, histological and immunohistochemical studies were performed to evaluate the healing process. After 7 days, open areas and degree of epithelialization were similar among the groups. Significant differences were observed in contraction between control and the N-C and Helix3-CP groups. Untreated animals exhibited a more pronounced granulation tissue with a high number of inflammatory cells and a disorganised extracellular matrix with type III collagen deposition. After 18 days, animals treated with new collagen (Hy-C and N-C) exhibited accelerated wound closure, increased epithelialization and a more organised granulation tissue. Local administration of new collagen treatments promotes the progression of the reparative process and significantly accelerates wound closure compared with nontreated wounds.
期刊介绍:
The Editors welcome papers on all aspects of prevention and treatment of wounds and associated conditions in the fields of surgery, dermatology, oncology, nursing, radiotherapy, physical therapy, occupational therapy and podiatry. The Journal accepts papers in the following categories:
- Research papers
- Review articles
- Clinical studies
- Letters
- News and Views: international perspectives, education initiatives, guidelines and different activities of groups and societies.
Calendar of events
The Editors are supported by a board of international experts and a panel of reviewers across a range of disciplines and specialties which ensures only the most current and relevant research is published.