Zahid Ullah, Iftikhar Ahmad, Abdul Samad, Husnain Saghir, Farooq Ahmad, Manabu Kano, Hakan Caliskan, Nesrin Caliskan, Hiki Hong
{"title":"人工智能辅助壳管式换热器最佳工况预测:灰盒方法","authors":"Zahid Ullah, Iftikhar Ahmad, Abdul Samad, Husnain Saghir, Farooq Ahmad, Manabu Kano, Hakan Caliskan, Nesrin Caliskan, Hiki Hong","doi":"10.1049/cit2.12393","DOIUrl":null,"url":null,"abstract":"<p>In this study, a Grey-box (GB) model was developed to predict the optimum mass flow rates of inlet streams of a Shell and Tube Heat Exchanger (STHE) under varying process conditions. Aspen Exchanger Design and Rating (Aspen-EDR) was initially used to construct a first principle model (FP) of the STHE using industrial data. The Genetic Algorithm (GA) was incorporated into the FP model to attain the minimum exit temperature for the hot kerosene process stream under varying process conditions. A dataset comprised of optimum process conditions was generated through FP-GA integration and was utilised to develop an Artificial Neural Networks (ANN) model. Subsequently, the ANN model was merged with the FP model by substituting the GA, to form a GB model. The developed GB model, that is, ANN and FP integration, achieved higher effectiveness and lower outlet temperature than those derived through the standalone FP model. Performance of the GB framework was also comparable to the FP-GA approach but it significantly reduced the computation time required for estimating the optimum process conditions. The proposed GB-based method improved the STHE's ability to extract energy from the process stream and strengthened its resilience to cope with diverse process conditions.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 2","pages":"349-358"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12393","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence assisted prediction of optimum operating conditions of shell and tube heat exchangers: A grey-box approach\",\"authors\":\"Zahid Ullah, Iftikhar Ahmad, Abdul Samad, Husnain Saghir, Farooq Ahmad, Manabu Kano, Hakan Caliskan, Nesrin Caliskan, Hiki Hong\",\"doi\":\"10.1049/cit2.12393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a Grey-box (GB) model was developed to predict the optimum mass flow rates of inlet streams of a Shell and Tube Heat Exchanger (STHE) under varying process conditions. Aspen Exchanger Design and Rating (Aspen-EDR) was initially used to construct a first principle model (FP) of the STHE using industrial data. The Genetic Algorithm (GA) was incorporated into the FP model to attain the minimum exit temperature for the hot kerosene process stream under varying process conditions. A dataset comprised of optimum process conditions was generated through FP-GA integration and was utilised to develop an Artificial Neural Networks (ANN) model. Subsequently, the ANN model was merged with the FP model by substituting the GA, to form a GB model. The developed GB model, that is, ANN and FP integration, achieved higher effectiveness and lower outlet temperature than those derived through the standalone FP model. Performance of the GB framework was also comparable to the FP-GA approach but it significantly reduced the computation time required for estimating the optimum process conditions. The proposed GB-based method improved the STHE's ability to extract energy from the process stream and strengthened its resilience to cope with diverse process conditions.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"10 2\",\"pages\":\"349-358\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12393\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12393\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12393","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Artificial intelligence assisted prediction of optimum operating conditions of shell and tube heat exchangers: A grey-box approach
In this study, a Grey-box (GB) model was developed to predict the optimum mass flow rates of inlet streams of a Shell and Tube Heat Exchanger (STHE) under varying process conditions. Aspen Exchanger Design and Rating (Aspen-EDR) was initially used to construct a first principle model (FP) of the STHE using industrial data. The Genetic Algorithm (GA) was incorporated into the FP model to attain the minimum exit temperature for the hot kerosene process stream under varying process conditions. A dataset comprised of optimum process conditions was generated through FP-GA integration and was utilised to develop an Artificial Neural Networks (ANN) model. Subsequently, the ANN model was merged with the FP model by substituting the GA, to form a GB model. The developed GB model, that is, ANN and FP integration, achieved higher effectiveness and lower outlet temperature than those derived through the standalone FP model. Performance of the GB framework was also comparable to the FP-GA approach but it significantly reduced the computation time required for estimating the optimum process conditions. The proposed GB-based method improved the STHE's ability to extract energy from the process stream and strengthened its resilience to cope with diverse process conditions.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.