ilu预条件系统中多项式加速的一种有效标度方案

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Feng Zhang, Xuebin Chi, Jinrong Jiang, Junlin Wei, Lian Zhao, Yuzhu Wang
{"title":"ilu预条件系统中多项式加速的一种有效标度方案","authors":"Feng Zhang,&nbsp;Xuebin Chi,&nbsp;Jinrong Jiang,&nbsp;Junlin Wei,&nbsp;Lian Zhao,&nbsp;Yuzhu Wang","doi":"10.1002/cpe.70098","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Polynomial preconditioning accelerates iterative methods for large-scale sparse linear systems by optimizing the spectral distribution and decreasing reduction communication overhead. The Neumann polynomial is notable for its simple construction and stable performance, making it easy to combine with other preconditioners and widely used in high-performance computing. The choice of scaling parameter within the Neumann series is critical for polynomial acceleration, requiring an accurate estimate of the eigenvalue bounds of the preconditioned system. In preconditioned systems, the clustering of the largest eigenvalues often slows the convergence of iterative methods used to estimate the maximum eigenvalue, leading to an underestimated scaling parameter. We address this issue by using a Least-Squares model with linear inequality constraints to learn effective combination weights of Ritz values from training samples. While the Rayleigh-Ritz process (the current best eigen-estimation approach) requires 20-30 iterations and systematically underestimates extremal eigenvalues due to Ritz values' interior spectral distribution, our constrained optimization approach achieves comparable accuracy in 10 iterations by learning optimal combination weights from Ritz value distributions and corrects the systematic underestimation while preserving positive definitenessa critical stability requirement that ensures robust preconditioning performance across diverse problem configurations. Our implementation of the Neumann polynomial with the proposed scaling scheme achieved acceleration ratios of 2.61 and 3.52 for ILU (Incomplete LU factorization) and block-ILU preconditioned systems, respectively. It achieves comparable acceleration with the recent state-of-the-art minimum residual polynomial in the ILU-preconditioned systems frequently providing better convergence acceleration in numerous practical scenarios.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 9-11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Scaling Scheme for Polynomial Acceleration in ILU-Preconditioned Systems\",\"authors\":\"Feng Zhang,&nbsp;Xuebin Chi,&nbsp;Jinrong Jiang,&nbsp;Junlin Wei,&nbsp;Lian Zhao,&nbsp;Yuzhu Wang\",\"doi\":\"10.1002/cpe.70098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Polynomial preconditioning accelerates iterative methods for large-scale sparse linear systems by optimizing the spectral distribution and decreasing reduction communication overhead. The Neumann polynomial is notable for its simple construction and stable performance, making it easy to combine with other preconditioners and widely used in high-performance computing. The choice of scaling parameter within the Neumann series is critical for polynomial acceleration, requiring an accurate estimate of the eigenvalue bounds of the preconditioned system. In preconditioned systems, the clustering of the largest eigenvalues often slows the convergence of iterative methods used to estimate the maximum eigenvalue, leading to an underestimated scaling parameter. We address this issue by using a Least-Squares model with linear inequality constraints to learn effective combination weights of Ritz values from training samples. While the Rayleigh-Ritz process (the current best eigen-estimation approach) requires 20-30 iterations and systematically underestimates extremal eigenvalues due to Ritz values' interior spectral distribution, our constrained optimization approach achieves comparable accuracy in 10 iterations by learning optimal combination weights from Ritz value distributions and corrects the systematic underestimation while preserving positive definitenessa critical stability requirement that ensures robust preconditioning performance across diverse problem configurations. Our implementation of the Neumann polynomial with the proposed scaling scheme achieved acceleration ratios of 2.61 and 3.52 for ILU (Incomplete LU factorization) and block-ILU preconditioned systems, respectively. It achieves comparable acceleration with the recent state-of-the-art minimum residual polynomial in the ILU-preconditioned systems frequently providing better convergence acceleration in numerous practical scenarios.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 9-11\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70098\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

多项式预处理通过优化谱分布和减少通信开销来加速大规模稀疏线性系统的迭代方法。Neumann多项式结构简单,性能稳定,易于与其他预调节器组合,在高性能计算中得到广泛应用。诺伊曼级数内尺度参数的选择对于多项式加速至关重要,需要对预条件系统的特征值界进行准确估计。在预条件系统中,最大特征值的聚类通常会减慢用于估计最大特征值的迭代方法的收敛速度,从而导致尺度参数被低估。我们通过使用具有线性不等式约束的最小二乘模型从训练样本中学习Ritz值的有效组合权值来解决这个问题。虽然瑞利-里兹过程(目前最好的特征估计方法)需要20-30次迭代,并且由于里兹值的内部光谱分布,系统地低估了极值特征值,我们的约束优化方法通过从里兹值分布中学习最优组合权重,在10次迭代中实现了相当的精度,并纠正了系统的低估,同时保持了正的definitenessï临界稳定性要求,确保了在不同问题配置中的鲁棒预处理性能。我们使用所提出的标度方案实现的Neumann多项式对ILU(不完全LU分解)和块ILU预处理系统分别实现了2.61和3.52的加速比。它在ilu预条件系统中实现了与最近最先进的最小残差多项式相当的加速度,在许多实际场景中经常提供更好的收敛加速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Scaling Scheme for Polynomial Acceleration in ILU-Preconditioned Systems

Polynomial preconditioning accelerates iterative methods for large-scale sparse linear systems by optimizing the spectral distribution and decreasing reduction communication overhead. The Neumann polynomial is notable for its simple construction and stable performance, making it easy to combine with other preconditioners and widely used in high-performance computing. The choice of scaling parameter within the Neumann series is critical for polynomial acceleration, requiring an accurate estimate of the eigenvalue bounds of the preconditioned system. In preconditioned systems, the clustering of the largest eigenvalues often slows the convergence of iterative methods used to estimate the maximum eigenvalue, leading to an underestimated scaling parameter. We address this issue by using a Least-Squares model with linear inequality constraints to learn effective combination weights of Ritz values from training samples. While the Rayleigh-Ritz process (the current best eigen-estimation approach) requires 20-30 iterations and systematically underestimates extremal eigenvalues due to Ritz values' interior spectral distribution, our constrained optimization approach achieves comparable accuracy in 10 iterations by learning optimal combination weights from Ritz value distributions and corrects the systematic underestimation while preserving positive definitenessa critical stability requirement that ensures robust preconditioning performance across diverse problem configurations. Our implementation of the Neumann polynomial with the proposed scaling scheme achieved acceleration ratios of 2.61 and 3.52 for ILU (Incomplete LU factorization) and block-ILU preconditioned systems, respectively. It achieves comparable acceleration with the recent state-of-the-art minimum residual polynomial in the ILU-preconditioned systems frequently providing better convergence acceleration in numerous practical scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信