乙型肝炎病毒通过IGF2BP3增加VEGFA mRNA的m6A修饰促进肝细胞癌血管生成

IF 6.8 3区 医学 Q1 VIROLOGY
Xiaoxin Xu, Yi Zhang, Shuxiang Wu, Yuecheng Wu, Xinjian Lin, Kunqi Chen, Xu Lin
{"title":"乙型肝炎病毒通过IGF2BP3增加VEGFA mRNA的m6A修饰促进肝细胞癌血管生成","authors":"Xiaoxin Xu,&nbsp;Yi Zhang,&nbsp;Shuxiang Wu,&nbsp;Yuecheng Wu,&nbsp;Xinjian Lin,&nbsp;Kunqi Chen,&nbsp;Xu Lin","doi":"10.1002/jmv.70356","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Angiogenesis plays a crucial role in the development of HBV-related hepatocellular carcinoma (HCC). VEGFA is a key angiogenic factor, and while its transcriptional regulation by HBV has been extensively studied, its posttranscriptional regulation by HBV remains poorly understood. Building on our previous findings that delineated an RBM15/YTHDF2/IGF2BP3 regulatory axis in m6A-mediated RNA metabolism in HCC, this study further explores the posttranscriptional regulation of VEGFA by HBV. By MeRIP-qPCR and integrating MeRIP-seq data, we discovered that HBV enhances m6A methylation of VEGFA mRNA. Comprehensive cellular and molecular biology experiments demonstrated that HBV induces the upregulation of IGF2BP3, which serves as a key “reader” that recognizes and stabilizes VEGFA mRNA in an m6A methylation-dependent manner. This stabilization leads to elevated VEGFA expression, promoting enhanced cellular functions such as HUVEC migration and tube formation. Furthermore, in an HBV-associated HCC xenograft model, IGF2BP3 knockdown resulted in decreased VEGFA expression and inhibited tumor growth. This study expands our understanding of HBV-driven angiogenesis and identifies the IGF2BP3-VEGFA axis as a potential therapeutic target for antiangiogenic strategies in HBV-related HCC.</p>\n </div>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 5","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatitis B Virus Promotes Angiogenesis in Hepatocellular Carcinoma by Increasing m6A Modification of VEGFA mRNA via IGF2BP3\",\"authors\":\"Xiaoxin Xu,&nbsp;Yi Zhang,&nbsp;Shuxiang Wu,&nbsp;Yuecheng Wu,&nbsp;Xinjian Lin,&nbsp;Kunqi Chen,&nbsp;Xu Lin\",\"doi\":\"10.1002/jmv.70356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Angiogenesis plays a crucial role in the development of HBV-related hepatocellular carcinoma (HCC). VEGFA is a key angiogenic factor, and while its transcriptional regulation by HBV has been extensively studied, its posttranscriptional regulation by HBV remains poorly understood. Building on our previous findings that delineated an RBM15/YTHDF2/IGF2BP3 regulatory axis in m6A-mediated RNA metabolism in HCC, this study further explores the posttranscriptional regulation of VEGFA by HBV. By MeRIP-qPCR and integrating MeRIP-seq data, we discovered that HBV enhances m6A methylation of VEGFA mRNA. Comprehensive cellular and molecular biology experiments demonstrated that HBV induces the upregulation of IGF2BP3, which serves as a key “reader” that recognizes and stabilizes VEGFA mRNA in an m6A methylation-dependent manner. This stabilization leads to elevated VEGFA expression, promoting enhanced cellular functions such as HUVEC migration and tube formation. Furthermore, in an HBV-associated HCC xenograft model, IGF2BP3 knockdown resulted in decreased VEGFA expression and inhibited tumor growth. This study expands our understanding of HBV-driven angiogenesis and identifies the IGF2BP3-VEGFA axis as a potential therapeutic target for antiangiogenic strategies in HBV-related HCC.</p>\\n </div>\",\"PeriodicalId\":16354,\"journal\":{\"name\":\"Journal of Medical Virology\",\"volume\":\"97 5\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70356\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70356","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血管生成在hbv相关肝细胞癌(HCC)的发展中起着至关重要的作用。VEGFA是一种关键的血管生成因子,虽然其在HBV中的转录调控已被广泛研究,但其在HBV中的转录后调控仍知之甚少。在我们之前的研究结果的基础上,我们描绘了肝癌中m6a介导的RNA代谢的RBM15/YTHDF2/IGF2BP3调控轴,本研究进一步探讨了HBV对VEGFA的转录后调控。通过MeRIP-qPCR和整合MeRIP-seq数据,我们发现HBV增强了VEGFA mRNA的m6A甲基化。综合细胞和分子生物学实验表明,HBV诱导IGF2BP3上调,IGF2BP3以m6A甲基化依赖的方式作为识别和稳定VEGFA mRNA的关键“阅读器”。这种稳定性导致VEGFA表达升高,促进增强的细胞功能,如HUVEC迁移和管形成。此外,在hbv相关的HCC异种移植模型中,IGF2BP3敲低导致VEGFA表达降低并抑制肿瘤生长。这项研究扩大了我们对hbv驱动血管生成的理解,并确定了IGF2BP3-VEGFA轴作为hbv相关HCC抗血管生成策略的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hepatitis B Virus Promotes Angiogenesis in Hepatocellular Carcinoma by Increasing m6A Modification of VEGFA mRNA via IGF2BP3

Angiogenesis plays a crucial role in the development of HBV-related hepatocellular carcinoma (HCC). VEGFA is a key angiogenic factor, and while its transcriptional regulation by HBV has been extensively studied, its posttranscriptional regulation by HBV remains poorly understood. Building on our previous findings that delineated an RBM15/YTHDF2/IGF2BP3 regulatory axis in m6A-mediated RNA metabolism in HCC, this study further explores the posttranscriptional regulation of VEGFA by HBV. By MeRIP-qPCR and integrating MeRIP-seq data, we discovered that HBV enhances m6A methylation of VEGFA mRNA. Comprehensive cellular and molecular biology experiments demonstrated that HBV induces the upregulation of IGF2BP3, which serves as a key “reader” that recognizes and stabilizes VEGFA mRNA in an m6A methylation-dependent manner. This stabilization leads to elevated VEGFA expression, promoting enhanced cellular functions such as HUVEC migration and tube formation. Furthermore, in an HBV-associated HCC xenograft model, IGF2BP3 knockdown resulted in decreased VEGFA expression and inhibited tumor growth. This study expands our understanding of HBV-driven angiogenesis and identifies the IGF2BP3-VEGFA axis as a potential therapeutic target for antiangiogenic strategies in HBV-related HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Virology
Journal of Medical Virology 医学-病毒学
CiteScore
23.20
自引率
2.40%
发文量
777
审稿时长
1 months
期刊介绍: The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells. The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists. The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信