一种高效集成的无线电检测与识别深度学习体系结构

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhiyong Luo, Yanru Wang, Xiti Wang
{"title":"一种高效集成的无线电检测与识别深度学习体系结构","authors":"Zhiyong Luo,&nbsp;Yanru Wang,&nbsp;Xiti Wang","doi":"10.1155/int/4477742","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The detection and identification of radio signals play a crucial role in cognitive radio, electronic reconnaissance, noncooperative communication, etc. Deep neural networks have emerged as a promising approach for electromagnetic signal detection and identification, outperforming traditional methods. Nevertheless, the present deep neural networks not only overlook the characteristics of electromagnetic signals but also treat these two tasks as independent components, similar to conventional methods. These issues limit overall performance and unnecessarily increase computational consumption. In this paper, we have designed a novel and universally applicable integrated radio detection and identification deep architecture and corresponding training method, which organically combines detection and identification networks. Furthermore, we extract signal features using only one-dimensional horizontal convolution based on the characteristics of the impact of wireless channels on time-domain signals. Experiments show that the proposed methods perform signal detection and identification more efficiently, which can not only reduce unnecessary computational consumption but also improve the accuracy and robustness of both detection and identification simultaneously. More specifically, the ability to distinguish different modulated signal categories tends to increase with the rise in SNRs, and the upper limit of detection accuracy can exceed 95% at SNRs above 0 dB. The proposed method can improve both signal detection and identification accuracy from 83.44% to 83.56% and from 61.27% to 62.32%, respectively.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4477742","citationCount":"0","resultStr":"{\"title\":\"An Efficient Integrated Radio Detection and Identification Deep Learning Architecture\",\"authors\":\"Zhiyong Luo,&nbsp;Yanru Wang,&nbsp;Xiti Wang\",\"doi\":\"10.1155/int/4477742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The detection and identification of radio signals play a crucial role in cognitive radio, electronic reconnaissance, noncooperative communication, etc. Deep neural networks have emerged as a promising approach for electromagnetic signal detection and identification, outperforming traditional methods. Nevertheless, the present deep neural networks not only overlook the characteristics of electromagnetic signals but also treat these two tasks as independent components, similar to conventional methods. These issues limit overall performance and unnecessarily increase computational consumption. In this paper, we have designed a novel and universally applicable integrated radio detection and identification deep architecture and corresponding training method, which organically combines detection and identification networks. Furthermore, we extract signal features using only one-dimensional horizontal convolution based on the characteristics of the impact of wireless channels on time-domain signals. Experiments show that the proposed methods perform signal detection and identification more efficiently, which can not only reduce unnecessary computational consumption but also improve the accuracy and robustness of both detection and identification simultaneously. More specifically, the ability to distinguish different modulated signal categories tends to increase with the rise in SNRs, and the upper limit of detection accuracy can exceed 95% at SNRs above 0 dB. The proposed method can improve both signal detection and identification accuracy from 83.44% to 83.56% and from 61.27% to 62.32%, respectively.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4477742\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/4477742\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/4477742","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

无线电信号的检测与识别在认知无线电、电子侦察、非合作通信等领域起着至关重要的作用。深度神经网络已经成为一种很有前途的电磁信号检测和识别方法,优于传统方法。然而,目前的深度神经网络不仅忽略了电磁信号的特性,而且将这两个任务视为独立的组成部分,类似于传统方法。这些问题限制了整体性能,并不必要地增加了计算消耗。本文设计了一种新颖的、普遍适用的综合无线电探测与识别深度体系结构和相应的训练方法,将探测与识别网络有机地结合起来。此外,我们基于无线信道对时域信号的影响特征,仅使用一维水平卷积提取信号特征。实验结果表明,该方法能够有效地进行信号检测和识别,减少了不必要的计算量,同时提高了检测和识别的准确性和鲁棒性。更具体地说,随着信噪比的提高,对不同调制信号类别的区分能力趋于增强,在信噪比大于0 dB时,检测精度上限可超过95%。该方法可将信号检测精度和识别精度分别从83.44%提高到83.56%和61.27%提高到62.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Efficient Integrated Radio Detection and Identification Deep Learning Architecture

An Efficient Integrated Radio Detection and Identification Deep Learning Architecture

The detection and identification of radio signals play a crucial role in cognitive radio, electronic reconnaissance, noncooperative communication, etc. Deep neural networks have emerged as a promising approach for electromagnetic signal detection and identification, outperforming traditional methods. Nevertheless, the present deep neural networks not only overlook the characteristics of electromagnetic signals but also treat these two tasks as independent components, similar to conventional methods. These issues limit overall performance and unnecessarily increase computational consumption. In this paper, we have designed a novel and universally applicable integrated radio detection and identification deep architecture and corresponding training method, which organically combines detection and identification networks. Furthermore, we extract signal features using only one-dimensional horizontal convolution based on the characteristics of the impact of wireless channels on time-domain signals. Experiments show that the proposed methods perform signal detection and identification more efficiently, which can not only reduce unnecessary computational consumption but also improve the accuracy and robustness of both detection and identification simultaneously. More specifically, the ability to distinguish different modulated signal categories tends to increase with the rise in SNRs, and the upper limit of detection accuracy can exceed 95% at SNRs above 0 dB. The proposed method can improve both signal detection and identification accuracy from 83.44% to 83.56% and from 61.27% to 62.32%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信