{"title":"圆盘状障碍物之间的磁隧穿","authors":"Søren Fournais, Léo Morin","doi":"10.1007/s00220-025-05295-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we derive formulae for the semiclassical tunneling in the presence of a constant magnetic field in 2 dimensions. The ‘wells’ in the problem are identical discs with Neumann boundary conditions, so we study the magnetic Neumann Laplacian in the complement of a set of discs. We provide a reduction method to an interaction matrix, which works for a general configuration of obstacles. When there are two discs, we deduce an asymptotic formula for the spectral gap. When the discs are placed along a regular lattice, we derive an effective operator which gives rise to the famous Harper’s equation. Main challenges in this problem compared to recent results on magnetic tunneling are the fact that one-well ground states have non-trivial angular momentum which depends on the semiclassical parameter, and the existence of eigenvalue crossings.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05295-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic Tunneling Between Disc-Shaped Obstacles\",\"authors\":\"Søren Fournais, Léo Morin\",\"doi\":\"10.1007/s00220-025-05295-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we derive formulae for the semiclassical tunneling in the presence of a constant magnetic field in 2 dimensions. The ‘wells’ in the problem are identical discs with Neumann boundary conditions, so we study the magnetic Neumann Laplacian in the complement of a set of discs. We provide a reduction method to an interaction matrix, which works for a general configuration of obstacles. When there are two discs, we deduce an asymptotic formula for the spectral gap. When the discs are placed along a regular lattice, we derive an effective operator which gives rise to the famous Harper’s equation. Main challenges in this problem compared to recent results on magnetic tunneling are the fact that one-well ground states have non-trivial angular momentum which depends on the semiclassical parameter, and the existence of eigenvalue crossings.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05295-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05295-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05295-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
In this paper we derive formulae for the semiclassical tunneling in the presence of a constant magnetic field in 2 dimensions. The ‘wells’ in the problem are identical discs with Neumann boundary conditions, so we study the magnetic Neumann Laplacian in the complement of a set of discs. We provide a reduction method to an interaction matrix, which works for a general configuration of obstacles. When there are two discs, we deduce an asymptotic formula for the spectral gap. When the discs are placed along a regular lattice, we derive an effective operator which gives rise to the famous Harper’s equation. Main challenges in this problem compared to recent results on magnetic tunneling are the fact that one-well ground states have non-trivial angular momentum which depends on the semiclassical parameter, and the existence of eigenvalue crossings.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.