María Ángeles García-Ferrero, Joaquim Ortega-Cerdá
{"title":"多项式上浓度不等式的稳定性","authors":"María Ángeles García-Ferrero, Joaquim Ortega-Cerdá","doi":"10.1007/s00220-025-05292-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the stability of the concentration inequality for one-dimensional complex polynomials. We provide the stability of the local concentration inequality and a global version using a Wehrl-type entropy.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05292-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability of the Concentration Inequality on Polynomials\",\"authors\":\"María Ángeles García-Ferrero, Joaquim Ortega-Cerdá\",\"doi\":\"10.1007/s00220-025-05292-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the stability of the concentration inequality for one-dimensional complex polynomials. We provide the stability of the local concentration inequality and a global version using a Wehrl-type entropy.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05292-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05292-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05292-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Stability of the Concentration Inequality on Polynomials
In this paper, we study the stability of the concentration inequality for one-dimensional complex polynomials. We provide the stability of the local concentration inequality and a global version using a Wehrl-type entropy.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.