Ahmad Alferidi, Mohammed Alsolami, Badr Lami, Sami Ben Slama
{"title":"人工智能驱动的微电网:互联系统中优化能源交易的多智能体深度强化学习","authors":"Ahmad Alferidi, Mohammed Alsolami, Badr Lami, Sami Ben Slama","doi":"10.1007/s13369-024-09754-4","DOIUrl":null,"url":null,"abstract":"<div><p>Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed generation (DG) and electric vehicles (EVs), have increased energy demand. This paper presents an artificial intelligence (AI) system that employs deep reinforcement learning to facilitate efficient device scheduling and peer-to-peer (P2P) energy trading within microgrids. The system accommodates users with varying access levels to distributed generation (DG), battery storage, and electric vehicles (EVs). The real-time pricing and demand response mechanisms enable the system to adapt to fluctuating energy requirements. In contrast, surplus energy is shared through a peer-to-peer network, reducing grid dependency. The approach was validated using an experimental database from Saudi Arabia, demonstrating a notable reduction in electricity costs for participants.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 8","pages":"6157 - 6179"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Powered Microgrid Networks: Multi-Agent Deep Reinforcement Learning for Optimized Energy Trading in Interconnected Systems\",\"authors\":\"Ahmad Alferidi, Mohammed Alsolami, Badr Lami, Sami Ben Slama\",\"doi\":\"10.1007/s13369-024-09754-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed generation (DG) and electric vehicles (EVs), have increased energy demand. This paper presents an artificial intelligence (AI) system that employs deep reinforcement learning to facilitate efficient device scheduling and peer-to-peer (P2P) energy trading within microgrids. The system accommodates users with varying access levels to distributed generation (DG), battery storage, and electric vehicles (EVs). The real-time pricing and demand response mechanisms enable the system to adapt to fluctuating energy requirements. In contrast, surplus energy is shared through a peer-to-peer network, reducing grid dependency. The approach was validated using an experimental database from Saudi Arabia, demonstrating a notable reduction in electricity costs for participants.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"50 8\",\"pages\":\"6157 - 6179\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-024-09754-4\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09754-4","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
AI-Powered Microgrid Networks: Multi-Agent Deep Reinforcement Learning for Optimized Energy Trading in Interconnected Systems
Intelligent smart microgrids have been identified as a subject of significant research interest, given their potential to optimize energy consumption in residential contexts. The growing utilization of intelligent appliances and the integration of renewable energy sources, including distributed generation (DG) and electric vehicles (EVs), have increased energy demand. This paper presents an artificial intelligence (AI) system that employs deep reinforcement learning to facilitate efficient device scheduling and peer-to-peer (P2P) energy trading within microgrids. The system accommodates users with varying access levels to distributed generation (DG), battery storage, and electric vehicles (EVs). The real-time pricing and demand response mechanisms enable the system to adapt to fluctuating energy requirements. In contrast, surplus energy is shared through a peer-to-peer network, reducing grid dependency. The approach was validated using an experimental database from Saudi Arabia, demonstrating a notable reduction in electricity costs for participants.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.