{"title":"开发一种高效的乳酸菌碱基编辑系统,以改善益生菌和解剖基本功能","authors":"Hitoshi Mitsunobu, Yudai Kita, Yumiko Nambu-Nishida, Shoko Miyazaki, Kensuke Nakajima, Ken-ichiro Taoka, Akihiko Kondo, Keiji Nishida","doi":"10.1007/s00253-025-13489-z","DOIUrl":null,"url":null,"abstract":"<p><i>Lactobacilli</i> play essential roles in the food industry and have a significant potential as probiotics and therapeutic agents. Genomic and genetic information has increasingly accumulated and been linked to their various functions, to which transgenic approaches are being performed to verify crucial genes. In order to reasonably develop more useful strains, beneficial traits need to be introduced into any given strains and enhanced or combined based on such genotype characterization. However, for practical use as probiotics or foods, organisms with transgene are hardly acceptable. Here, we have introduced the base editing Target-AID system specifically for <i>Lactobacilli</i>, enabling precise installation of point mutations without donor DNA and at multiple genomic loci simultaneously. <i>Lactiplantibacillus plantarum</i> has been successfully engineered to reduce production of imidazole propionate, which has been reported to be associated with type 2 diabetes by impairing glucose tolerance and insulin signaling. Additionally, this system enabled transient knock-out of an essential gene, such as one involved in cell division, resulting in severe filamentous cell phenotype. This demonstrates Target-AID is a promising genetic tool for <i>Lactobacilli</i> and can accelerate both applied and fundamental research.</p><p><i>• Efficient and multiplexable cytosine base editing established in Lactobacilli.</i></p><p><i>• Edited Lactobacillus reducing imidazole propionate associated with the risk of type 2 diabetes.</i></p><p><i>• Transient knock-out and dissection of an essential gene function.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13489-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a highly efficient base editing system for Lactobacilli to improve probiotics and dissect essential functions\",\"authors\":\"Hitoshi Mitsunobu, Yudai Kita, Yumiko Nambu-Nishida, Shoko Miyazaki, Kensuke Nakajima, Ken-ichiro Taoka, Akihiko Kondo, Keiji Nishida\",\"doi\":\"10.1007/s00253-025-13489-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Lactobacilli</i> play essential roles in the food industry and have a significant potential as probiotics and therapeutic agents. Genomic and genetic information has increasingly accumulated and been linked to their various functions, to which transgenic approaches are being performed to verify crucial genes. In order to reasonably develop more useful strains, beneficial traits need to be introduced into any given strains and enhanced or combined based on such genotype characterization. However, for practical use as probiotics or foods, organisms with transgene are hardly acceptable. Here, we have introduced the base editing Target-AID system specifically for <i>Lactobacilli</i>, enabling precise installation of point mutations without donor DNA and at multiple genomic loci simultaneously. <i>Lactiplantibacillus plantarum</i> has been successfully engineered to reduce production of imidazole propionate, which has been reported to be associated with type 2 diabetes by impairing glucose tolerance and insulin signaling. Additionally, this system enabled transient knock-out of an essential gene, such as one involved in cell division, resulting in severe filamentous cell phenotype. This demonstrates Target-AID is a promising genetic tool for <i>Lactobacilli</i> and can accelerate both applied and fundamental research.</p><p><i>• Efficient and multiplexable cytosine base editing established in Lactobacilli.</i></p><p><i>• Edited Lactobacillus reducing imidazole propionate associated with the risk of type 2 diabetes.</i></p><p><i>• Transient knock-out and dissection of an essential gene function.</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-025-13489-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-025-13489-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13489-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development of a highly efficient base editing system for Lactobacilli to improve probiotics and dissect essential functions
Lactobacilli play essential roles in the food industry and have a significant potential as probiotics and therapeutic agents. Genomic and genetic information has increasingly accumulated and been linked to their various functions, to which transgenic approaches are being performed to verify crucial genes. In order to reasonably develop more useful strains, beneficial traits need to be introduced into any given strains and enhanced or combined based on such genotype characterization. However, for practical use as probiotics or foods, organisms with transgene are hardly acceptable. Here, we have introduced the base editing Target-AID system specifically for Lactobacilli, enabling precise installation of point mutations without donor DNA and at multiple genomic loci simultaneously. Lactiplantibacillus plantarum has been successfully engineered to reduce production of imidazole propionate, which has been reported to be associated with type 2 diabetes by impairing glucose tolerance and insulin signaling. Additionally, this system enabled transient knock-out of an essential gene, such as one involved in cell division, resulting in severe filamentous cell phenotype. This demonstrates Target-AID is a promising genetic tool for Lactobacilli and can accelerate both applied and fundamental research.
• Efficient and multiplexable cytosine base editing established in Lactobacilli.
• Edited Lactobacillus reducing imidazole propionate associated with the risk of type 2 diabetes.
• Transient knock-out and dissection of an essential gene function.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.