基于增强曼巴特征融合的FM-RTDETR小目标检测算法

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuchuan Yang;Jiahui Dai;Yong Wang;Yafei Chen
{"title":"基于增强曼巴特征融合的FM-RTDETR小目标检测算法","authors":"Yuchuan Yang;Jiahui Dai;Yong Wang;Yafei Chen","doi":"10.1109/LSP.2025.3553426","DOIUrl":null,"url":null,"abstract":"Traditional real-time object detection networks deployed in autonomous aerial vehicles (AAVs) struggle to extract features from small objects in complex backgrounds with occlusions and overlapping objects. To address this challenge, we propose FM-RTDETR, a real-time object detection algorithm optimized for small object detection. We redesign the encoder of RT-DETRv2 by integrating the Feature Aggregation and Diffusion Network (FADN), improving the algorithm's ability to capture contextual information. Subsequently, we introduce the Parallel Atrous Mamba Feature Fusion Module (PAMFFM), which combines shallow and deep semantic information to better capture small object features. Furthermore, we propose the Cross-stage Enhanced Feature Fusion Module (CEFFM), merging features for small objects to provide richer and more detailed information. Finally, we propose STIoU Loss, which incorporates a penalty term to adjust the scaling of the loss function, improving detection granularity for small objects. FM-RTDETR achieves AP<inline-formula><tex-math>$_{50}$</tex-math></inline-formula> scores of 54.0% and 56.3% on the VisDrone2019-DET and AI-TOD datasets. Compared with other state-of-the-art methods, our method shows great potential in small object detection from drones.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1570-1574"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FM-RTDETR: Small Object Detection Algorithm Based on Enhanced Feature Fusion With Mamba\",\"authors\":\"Yuchuan Yang;Jiahui Dai;Yong Wang;Yafei Chen\",\"doi\":\"10.1109/LSP.2025.3553426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional real-time object detection networks deployed in autonomous aerial vehicles (AAVs) struggle to extract features from small objects in complex backgrounds with occlusions and overlapping objects. To address this challenge, we propose FM-RTDETR, a real-time object detection algorithm optimized for small object detection. We redesign the encoder of RT-DETRv2 by integrating the Feature Aggregation and Diffusion Network (FADN), improving the algorithm's ability to capture contextual information. Subsequently, we introduce the Parallel Atrous Mamba Feature Fusion Module (PAMFFM), which combines shallow and deep semantic information to better capture small object features. Furthermore, we propose the Cross-stage Enhanced Feature Fusion Module (CEFFM), merging features for small objects to provide richer and more detailed information. Finally, we propose STIoU Loss, which incorporates a penalty term to adjust the scaling of the loss function, improving detection granularity for small objects. FM-RTDETR achieves AP<inline-formula><tex-math>$_{50}$</tex-math></inline-formula> scores of 54.0% and 56.3% on the VisDrone2019-DET and AI-TOD datasets. Compared with other state-of-the-art methods, our method shows great potential in small object detection from drones.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1570-1574\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10935299/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10935299/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

部署在自动飞行器(aav)上的传统实时目标检测网络难以从具有遮挡和重叠目标的复杂背景中的小目标中提取特征。为了解决这一挑战,我们提出了FM-RTDETR,一种针对小目标检测优化的实时目标检测算法。我们通过集成特征聚合和扩散网络(FADN)对RT-DETRv2的编码器进行了重新设计,提高了算法捕获上下文信息的能力。随后,我们引入了并行Atrous曼巴特征融合模块(PAMFFM),该模块结合了浅层和深层语义信息,以更好地捕获小目标特征。此外,我们提出了跨阶段增强特征融合模块(CEFFM),对小目标进行特征融合,以提供更丰富、更详细的信息。最后,我们提出了STIoU Loss,它包含了一个惩罚项来调整损失函数的缩放,提高了小目标的检测粒度。FM-RTDETR在VisDrone2019-DET和AI-TOD数据集上实现了54.0%和56.3%的AP$_{50}$得分。与其他最先进的方法相比,我们的方法在无人机小目标检测方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FM-RTDETR: Small Object Detection Algorithm Based on Enhanced Feature Fusion With Mamba
Traditional real-time object detection networks deployed in autonomous aerial vehicles (AAVs) struggle to extract features from small objects in complex backgrounds with occlusions and overlapping objects. To address this challenge, we propose FM-RTDETR, a real-time object detection algorithm optimized for small object detection. We redesign the encoder of RT-DETRv2 by integrating the Feature Aggregation and Diffusion Network (FADN), improving the algorithm's ability to capture contextual information. Subsequently, we introduce the Parallel Atrous Mamba Feature Fusion Module (PAMFFM), which combines shallow and deep semantic information to better capture small object features. Furthermore, we propose the Cross-stage Enhanced Feature Fusion Module (CEFFM), merging features for small objects to provide richer and more detailed information. Finally, we propose STIoU Loss, which incorporates a penalty term to adjust the scaling of the loss function, improving detection granularity for small objects. FM-RTDETR achieves AP$_{50}$ scores of 54.0% and 56.3% on the VisDrone2019-DET and AI-TOD datasets. Compared with other state-of-the-art methods, our method shows great potential in small object detection from drones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信