使用四个 2 × 2 光纤耦合器的多子环环腔单纵模掺镱光纤激光器

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zi Wang;Brian Pamukti;Fan-Chang Meng;Shien-Kuei Liaw;Chien-Hung Yeh;Jem-Kun Chen
{"title":"使用四个 2 × 2 光纤耦合器的多子环环腔单纵模掺镱光纤激光器","authors":"Zi Wang;Brian Pamukti;Fan-Chang Meng;Shien-Kuei Liaw;Chien-Hung Yeh;Jem-Kun Chen","doi":"10.1109/JQE.2025.3548944","DOIUrl":null,"url":null,"abstract":"In this paper, we present a single-longitudinal mode (SLM) Ytterbium-doped fiber laser (YDFL) featuring a six-subring cavity (SSRC) structure. The YDFL achieves SLM output through use of the SSRC architecture. We evaluated the stability of both wavelength and power during the experimental measurements. The results show that the wavelength and power fluctuations over one hour were less than 0.01 nm and 0.03 dB, respectively. Measurements confirmed that the YDFL, with the SSRC structure, operates stably in a SLM state. Finally, by applying Lorentzian fitting to the measured data, a linewidth of 2.4 kHz was obtained.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 2","pages":"1-6"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Longitudinal Mode Ytterbium-Doped Fiber Laser Using Four 2 × 2 Fiber Couplers for Multiple Subring Ring Cavities\",\"authors\":\"Zi Wang;Brian Pamukti;Fan-Chang Meng;Shien-Kuei Liaw;Chien-Hung Yeh;Jem-Kun Chen\",\"doi\":\"10.1109/JQE.2025.3548944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a single-longitudinal mode (SLM) Ytterbium-doped fiber laser (YDFL) featuring a six-subring cavity (SSRC) structure. The YDFL achieves SLM output through use of the SSRC architecture. We evaluated the stability of both wavelength and power during the experimental measurements. The results show that the wavelength and power fluctuations over one hour were less than 0.01 nm and 0.03 dB, respectively. Measurements confirmed that the YDFL, with the SSRC structure, operates stably in a SLM state. Finally, by applying Lorentzian fitting to the measured data, a linewidth of 2.4 kHz was obtained.\",\"PeriodicalId\":13200,\"journal\":{\"name\":\"IEEE Journal of Quantum Electronics\",\"volume\":\"61 2\",\"pages\":\"1-6\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10916611/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10916611/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种具有六亚腔结构的单纵模掺镱光纤激光器(YDFL)。YDFL通过使用SSRC体系结构实现SLM输出。在实验测量中,我们评估了波长和功率的稳定性。结果表明,1 h内波长波动小于0.01 nm,功率波动小于0.03 dB。测量结果证实,具有SSRC结构的YDFL在SLM状态下稳定运行。最后,对实测数据进行洛伦兹拟合,得到了2.4 kHz的线宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Longitudinal Mode Ytterbium-Doped Fiber Laser Using Four 2 × 2 Fiber Couplers for Multiple Subring Ring Cavities
In this paper, we present a single-longitudinal mode (SLM) Ytterbium-doped fiber laser (YDFL) featuring a six-subring cavity (SSRC) structure. The YDFL achieves SLM output through use of the SSRC architecture. We evaluated the stability of both wavelength and power during the experimental measurements. The results show that the wavelength and power fluctuations over one hour were less than 0.01 nm and 0.03 dB, respectively. Measurements confirmed that the YDFL, with the SSRC structure, operates stably in a SLM state. Finally, by applying Lorentzian fitting to the measured data, a linewidth of 2.4 kHz was obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信